References
Baumer, Benjamin S., Daniel T. Kaplan, and Nicholas J. Horton. 2017. Modern Data Science with r (Chapman & Hall/CRC Texts in Statistical Science). Boca Raton, Florida: Chapman; Hall/CRC.
Chen, Tianqi, and Carlos Guestrin. 2016. “XGBoost: A Scalable Tree Boosting System.” In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–94. KDD ’16. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/2939672.2939785.
Friedman, J. 2001. “Greedy Function Approximation: A Gradient Boosting Machine.” https://doi.org/10.1214/AOS/1013203451.
Hvitfeldt, Emil. 2022. ISLR Tidymodels Labs. https://emilhvitfeldt.github.io/ISLR-tidymodels-labs/index.html.
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2021. An Introduction to Statistical Learning: With Applications in r. Second edition. Springer Texts in Statistics. New York: Springer. https://link.springer.com/book/10.1007/978-1-0716-1418-1.
Kuhn, Max, and Kjell Johnson. 2013. Applied Predictive Modeling. Vol. 26. Springer.
Rhys, Hefin. 2020. Machine Learning with r, the Tidyverse, and Mlr. Shelter Island, NY: Manning publications.
Sauer, Sebastian. 2019. Moderne Datenanalyse Mit r: Daten Einlesen, Aufbereiten, Visualisieren Und Modellieren. 1. Auflage 2019. FOM-Edition. Wiesbaden: Springer. https://www.springer.com/de/book/9783658215866.
Spurzem, Lothar. 2017. VW 1303 von Wiking in 1:87. https://de.wikipedia.org/wiki/Modellautomobil#/media/File:Wiking-Modell_VW_1303_(um_1975).JPG.
Taleb, Nassim Nicholas. 2019. The Statistical Consequences of Fat Tails, Papers and Commentaries. Monograph. https://nassimtaleb.org/2020/01/final-version-fat-tails/.
Timbers, Tiffany-Anne, Trevor Campbell, and Melissa Lee. 2022. Data Science: An Introduction. First edition. Statistics. Boca Raton: CRC Press.
Wickham, Hadley, and Garrett Grolemund. 2016. R for Data Science: Visualize, Model, Transform, Tidy, and Import Data. O’Reilly Media. https://r4ds.had.co.nz/index.html.