FFA-Norm values analyses

Based on the 2009 Paper by Kohls, Sauer and Walach

Author

Sebastian Sauer

Published

August 11, 2025

1 Summary

  • This analyses comprises (a) descriptive (summary) statistics as well as (b) norm values

  • All analyses were based on the FMI13 as presented in Kohls, Sauer and Walach (2009):

Kohls, N., Sauer, S., & Walach, H. (2009). Facets of mindfulness – Results of an online study investigating the Freiburg mindfulness inventory. Personality and Individual Differences, 46(2), 224–230. https://doi.org/10.1016/j.paid.2008.10.009

  • Results are presented for (a) a general factor solution (b) and for the two factor solution, based on the paper of Kohls, Sauer and Walach (2009)

  • The present norm analyses includes the following norm values: z-values, T values, percentage rank empirical, percentage rank based on a normal distribution

  • For the descriptive analyses, typical statistics are reproted, ie. mean, sd, range, quartiles, skewness, kurtosis as well as a “0-1-standardized mean”, defined as mean/3 (as 3 is the theoretical upper limit of each score). This statistics is meant to easy comparison.

  • A number of subgroup results are presented: by sex (female and male), continuous mindfulness training (yes or no), whether intensive mindfulnes retreats have been conducted (yes or noy), whether Vipassana training is practiced (yes or no), age (median split, ie., 49 years)

2 Setup

Load R-Packages and other functions used.

Code
library(easystats)
library(here)
library(tidyverse)
#library(knitr)
library(DataExplorer)
#library(scales)
library(knitr)
library(gt)
library(magrittr)  # extract2
library(lavaan)
library(semPlot)
library(psych)
library(tinytable)
library(reactable)
library(DT)
Code
source("R/funs.R")
source("R/01-prepare-data.R")
source("R/get_results_list.R")

3 Data

3.1 Prepare data

Code
d_w_items <- prepare_FMI_data()
Reading data...
Variables where all values have associated labels are now converted into
  factors. If this is not intended, use `convert_factors = FALSE`.
38 out of 56 variables were fully labelled and converted into factors.
Following 1 variables are empty:
  Filter
  
Use `remove_empty_columns()` to remove them from the data frame.
The following items were matched to the *presence* factor:  ffa_1 ffa_2 ffa_3 ffa_5 ffa_7 ffa_10  
The following items were matched to the *acceptance* factor:  ffa_4 ffa_6 ffa_8 ffa_9 ffa_11 ffa_12 ffa_14  
mutating factors to character variables
Code
names(d_w_items)
 [1] "Nummer"                 "STATUS"                 "Einwilligung"          
 [4] "Alter"                  "Geschlecht"             "Bildung"               
 [7] "Haushaltsgrösse"        "Religion"               "Evang"                 
[10] "Islam"                  "Judentum"               "keineRel"              
[13] "Andere_Religion"        "feste_Stelle"           "Einkommen"             
[16] "Kursteilnahme"          "tägl_Übung"             "Achts_regel"           
[19] "Vip_regel"              "Zen_regel"              "TM_regel"              
[22] "Kontemp_regel"          "Yoga_regel"             "TaiChi_regel"          
[25] "ChiGong_regel"          "Tantra_regel"           "Ander_regel"           
[28] "Anderes"                "Praxisjahre"            "Retreats"              
[31] "Theorie"                "Presence"               "Acceptance"            
[34] "Summe"                  "Acceptance13"           "SummeFFA13"            
[37] "phq_sum"                "fmi13_mean"             "presence_mean"         
[40] "acceptance13_mean"      "fmi14_mean"             "ffa_1"                 
[43] "ffa_2"                  "ffa_3"                  "ffa_4"                 
[46] "ffa_5"                  "ffa_6"                  "ffa_7"                 
[49] "ffa_8"                  "ffa_9"                  "ffa_10"                
[52] "ffa_11"                 "ffa_12"                 "ffa_13r"               
[55] "ffa_14"                 "mindfulness_experience"

3.2 Item labels

Code
item_labels <- 
  read_csv("metadata/FMI-items.csv") |> 
  mutate(item_name = paste0("FFA_", nr))
Rows: 14 Columns: 6
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (5): label_de, label_en, facet_Diagnostica_2013, facet_PAID_2009, comment
dbl (1): nr

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

3.3 Matching items to factors

Presence items:

Code
item_labels |> 
  filter(facet_PAID_2009 == "Presence") |> 
  select(nr) |> 
  extract2(1)
[1]  1  2  3  5  7 10

Acceptance items:

Code
item_labels |> 
  filter(facet_PAID_2009 == "Acceptance") |> 
  select(nr)|> 
  extract2(1)
[1]  4  6  8  9 11 12 13 14

4 Describe factors

4.1 Visualization of factor distributions

Code
d_w_items %>% 
  select(ends_with("_mean")) %>% 
  plot_density() + theme_minimal()

NULL

This is Figure 1 in the paper:

Alternative visualization, keeping the x-axis constant:

Code
facet_labs <- c(acceptance13_mean = "Acceptance",
                fmi13_mean = "FMI-13R",
                fmi14_mean = "FMI-14",
                presence_mean = "Presence")

facet_labs <- factor(facet_labs, 
                     levels = c("FMI-14", "FMI-13R", "Acceptance", "Presence"))
  
d_w_items_long <- 
d_w_items %>% 
  select(ends_with("_mean")) %>% 
  pivot_longer(everything()) |> 
  mutate(name = case_when(
    name == "fmi14_mean" ~ "FMI14",
    name == "fmi13_mean" ~ "FMI13R",
    name == "acceptance13_mean" ~ "Acceptance subscale",
    name == "presence_mean" ~ "Presence subscale"
  ))

#unique(d_w_items_long$name)
  
d_w_items_long$name <- factor(d_w_items_long$name , 
                     levels = c("FMI14", 
                                "FMI13R", 
                                "Acceptance subscale", 
                                "Presence facet"))

d_w_items_long |> 
ggplot(aes(x = value)) +
  geom_density() +
  facet_wrap(~ name, labeller = as_labeller(facet_labs)) +
  theme_minimal() +
  theme(strip.text = element_text(size = 14),
                axis.text = element_text(size =14),
        axis.ticks.y = element_blank()) +
  labs(y = "",
       x = "mean score") +
  scale_y_continuous(breaks = NULL)

4.2 Descriptive statistics

“Mean01” refers to a 0-1-standardized mean.

Code
desc_stats_df <- 
d_w_items %>% 
  select(ends_with("_mean")) %>% 
  describe_distribution(iqr = FALSE, range = TRUE, quartiles = TRUE) %>% 
  mutate(Mean01 = Mean/3) %>% 
  mutate(Model = c("FMI-13R", "Presence", "Acceptance", "FMI-14")) |> 
  relocate(Mean01, .after = Mean) %>% 
  relocate(Model, .before = everything()) |> 
  select(-Variable, -n_Missing)
  
desc_stats_df |> 
  knitr::kable(digits = 2)
Model Mean Mean01 SD Min Max Q1 Q3 Skewness Kurtosis n
FMI-13R 1.71 0.57 0.51 0.21 3 1.36 2 -0.15 0.16 1012
Presence 1.70 0.57 0.59 0.00 3 1.33 2 -0.24 0.19 1012
Acceptance 1.73 0.58 0.58 0.00 3 1.43 2 -0.22 0.27 1012
FMI-14 1.71 0.57 0.51 0.21 3 1.36 2 -0.15 0.16 1012

5 Norms overall (no subgroups)

5.1 Mean to norms

Code
col_names <- c("Mean", "Percent (empirical)", "z", "Stanine", "T", "Percent (normal)")

norms_list <- 
d_w_items %>% 
  select(ends_with("_mean")) %>% 
  map(~ compute_all_norms(., min_score = 0, max_score = 3, by = .1))
  
norms_list |> 
  map(~ knitr::kable(., 
                     digits = 2, col.names = col_names))

$fmi13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.37 1.00 16.35 0.00
0.1 0.00 -3.17 1.00 18.31 0.00
0.2 0.00 -2.97 1.00 20.28 0.00
0.3 0.01 -2.78 1.00 22.24 0.00
0.4 0.01 -2.58 1.00 24.21 0.00
0.5 0.02 -2.38 1.00 26.17 0.01
0.6 0.02 -2.19 1.00 28.13 0.01
0.7 0.03 -1.99 1.02 30.10 0.02
0.8 0.04 -1.79 1.41 32.06 0.04
0.9 0.05 -1.60 1.80 34.02 0.06
1.0 0.09 -1.40 2.20 35.99 0.08
1.1 0.12 -1.20 2.59 37.95 0.11
1.2 0.15 -1.01 2.98 39.92 0.16
1.3 0.21 -0.81 3.38 41.88 0.21
1.4 0.25 -0.62 3.77 43.84 0.27
1.5 0.34 -0.42 4.16 45.81 0.34
1.6 0.40 -0.22 4.55 47.77 0.41
1.7 0.45 -0.03 4.95 49.74 0.49
1.8 0.58 0.17 5.34 51.70 0.57
1.9 0.64 0.37 5.73 53.66 0.64
2.0 0.76 0.56 6.13 55.63 0.71
2.1 0.80 0.76 6.52 57.59 0.78
2.2 0.83 0.96 6.91 59.56 0.83
2.3 0.89 1.15 7.30 61.52 0.88
2.4 0.91 1.35 7.70 63.48 0.91
2.5 0.95 1.54 8.09 65.45 0.94
2.6 0.96 1.74 8.48 67.41 0.96
2.7 0.97 1.94 8.88 69.38 0.97
2.8 0.99 2.13 9.00 71.34 0.98
2.9 0.99 2.33 9.00 73.30 0.99
3.0 1.00 2.53 9.00 75.27 0.99

$presence_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.01 -2.86 1.00 21.37 0.00
0.1 0.01 -2.69 1.00 23.06 0.00
0.2 0.02 -2.53 1.00 24.74 0.01
0.3 0.02 -2.36 1.00 26.43 0.01
0.4 0.02 -2.19 1.00 28.12 0.01
0.5 0.04 -2.02 1.00 29.80 0.02
0.6 0.04 -1.85 1.30 31.49 0.03
0.7 0.06 -1.68 1.64 33.18 0.05
0.8 0.06 -1.51 1.97 34.86 0.07
0.9 0.09 -1.34 2.31 36.55 0.09
1.0 0.15 -1.18 2.65 38.24 0.12
1.1 0.15 -1.01 2.98 39.92 0.16
1.2 0.21 -0.84 3.32 41.61 0.20
1.3 0.21 -0.67 3.66 43.30 0.25
1.4 0.29 -0.50 4.00 44.99 0.31
1.5 0.40 -0.33 4.33 46.67 0.37
1.6 0.40 -0.16 4.67 48.36 0.43
1.7 0.52 0.00 5.01 50.05 0.50
1.8 0.52 0.17 5.35 51.73 0.57
1.9 0.64 0.34 5.68 53.42 0.63
2.0 0.77 0.51 6.02 55.11 0.70
2.1 0.77 0.68 6.36 56.79 0.75
2.2 0.84 0.85 6.70 58.48 0.80
2.3 0.84 1.02 7.03 60.17 0.85
2.4 0.89 1.19 7.37 61.85 0.88
2.5 0.93 1.35 7.71 63.54 0.91
2.6 0.93 1.52 8.05 65.23 0.94
2.7 0.96 1.69 8.38 66.91 0.95
2.8 0.96 1.86 8.72 68.60 0.97
2.9 0.98 2.03 9.00 70.29 0.98
3.0 1.00 2.20 9.00 71.97 0.99

$acceptance13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.01 -2.99 1.00 20.06 0.00
0.1 0.01 -2.82 1.00 21.78 0.00
0.2 0.01 -2.65 1.00 23.51 0.00
0.3 0.02 -2.48 1.00 25.24 0.01
0.4 0.02 -2.30 1.00 26.96 0.01
0.5 0.03 -2.13 1.00 28.69 0.02
0.6 0.04 -1.96 1.08 30.42 0.03
0.7 0.04 -1.79 1.43 32.14 0.04
0.8 0.05 -1.61 1.77 33.87 0.05
0.9 0.08 -1.44 2.12 35.60 0.07
1.0 0.13 -1.27 2.47 37.33 0.10
1.1 0.13 -1.09 2.81 39.05 0.14
1.2 0.17 -0.92 3.16 40.78 0.18
1.3 0.24 -0.75 3.50 42.51 0.23
1.4 0.24 -0.58 3.85 44.23 0.28
1.5 0.33 -0.40 4.19 45.96 0.34
1.6 0.42 -0.23 4.54 47.69 0.41
1.7 0.42 -0.06 4.88 49.41 0.48
1.8 0.51 0.11 5.23 51.14 0.55
1.9 0.63 0.29 5.57 52.87 0.61
2.0 0.75 0.46 5.92 54.60 0.68
2.1 0.75 0.63 6.26 56.32 0.74
2.2 0.82 0.80 6.61 58.05 0.79
2.3 0.87 0.98 6.96 59.78 0.84
2.4 0.87 1.15 7.30 61.50 0.87
2.5 0.90 1.32 7.65 63.23 0.91
2.6 0.94 1.50 7.99 64.96 0.93
2.7 0.94 1.67 8.34 66.68 0.95
2.8 0.96 1.84 8.68 68.41 0.97
2.9 0.98 2.01 9.00 70.14 0.98
3.0 1.00 2.19 9.00 71.87 0.99

$fmi14_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.37 1.00 16.35 0.00
0.1 0.00 -3.17 1.00 18.31 0.00
0.2 0.00 -2.97 1.00 20.28 0.00
0.3 0.01 -2.78 1.00 22.24 0.00
0.4 0.01 -2.58 1.00 24.21 0.00
0.5 0.02 -2.38 1.00 26.17 0.01
0.6 0.02 -2.19 1.00 28.13 0.01
0.7 0.03 -1.99 1.02 30.10 0.02
0.8 0.04 -1.79 1.41 32.06 0.04
0.9 0.05 -1.60 1.80 34.02 0.06
1.0 0.09 -1.40 2.20 35.99 0.08
1.1 0.12 -1.20 2.59 37.95 0.11
1.2 0.15 -1.01 2.98 39.92 0.16
1.3 0.21 -0.81 3.38 41.88 0.21
1.4 0.25 -0.62 3.77 43.84 0.27
1.5 0.34 -0.42 4.16 45.81 0.34
1.6 0.40 -0.22 4.55 47.77 0.41
1.7 0.45 -0.03 4.95 49.74 0.49
1.8 0.58 0.17 5.34 51.70 0.57
1.9 0.64 0.37 5.73 53.66 0.64
2.0 0.76 0.56 6.13 55.63 0.71
2.1 0.80 0.76 6.52 57.59 0.78
2.2 0.83 0.96 6.91 59.56 0.83
2.3 0.89 1.15 7.30 61.52 0.88
2.4 0.91 1.35 7.70 63.48 0.91
2.5 0.95 1.54 8.09 65.45 0.94
2.6 0.96 1.74 8.48 67.41 0.96
2.7 0.97 1.94 8.88 69.38 0.97
2.8 0.99 2.13 9.00 71.34 0.98
2.9 0.99 2.33 9.00 73.30 0.99
3.0 1.00 2.53 9.00 75.27 0.99

5.2 Stanine to means

Code
# Z-score boundaries between stanine bands (8 boundaries for 9 bands)

dist_df <-
  desc_stats_df |> select(Model, Mean, SD)

z_boundaries <- c(-1.75, -1.25, -0.75, -0.25, 0.25, 0.75, 1.25, 1.75)


compute_stanine_ranges <- function(Model, Mean, SD) {
  raw_bounds <- z_boundaries * SD + Mean
  data.frame(
    Model = Model,
    Stanine = 1:9,
    Lower_Bound = c(-Inf, raw_bounds),
    Upper_Bound = c(raw_bounds, Inf)
  )
}

# Apply to all models
stanine_table <- pmap_dfr(dist_df, compute_stanine_ranges) |> 
  rownames_to_column()
  
rownames(stanine_table) <- NULL
Code
# results: asis


# Print the result using kable for nicer formatting


col_names <- c("Stanine", "Lower Bound Mean Score", "Upper Bound Mean Score")

stanine_table %>%
  split(.$Model) %>%
  walk(~{
    cat("\n\n### Stanine Table for", unique(.$Model), "\n\n")
    print(kable(select(., -c(Model, rowname)), digits = 1, 
                row.names = FALSE,
                col.names = col_names))
  })

5.2.1 Stanine Table for Acceptance

Stanine Lower Bound Mean Score Upper Bound Mean Score
1 -Inf 0.7
2 0.7 1.0
3 1.0 1.3
4 1.3 1.6
5 1.6 1.9
6 1.9 2.2
7 2.2 2.5
8 2.5 2.7
9 2.7 Inf

5.2.2 Stanine Table for FMI-13R

Stanine Lower Bound Mean Score Upper Bound Mean Score
1 -Inf 0.8
2 0.8 1.1
3 1.1 1.3
4 1.3 1.6
5 1.6 1.8
6 1.8 2.1
7 2.1 2.3
8 2.3 2.6
9 2.6 Inf

5.2.3 Stanine Table for FMI-14

Stanine Lower Bound Mean Score Upper Bound Mean Score
1 -Inf 0.8
2 0.8 1.1
3 1.1 1.3
4 1.3 1.6
5 1.6 1.8
6 1.8 2.1
7 2.1 2.3
8 2.3 2.6
9 2.6 Inf

5.2.4 Stanine Table for Presence

Stanine Lower Bound Mean Score Upper Bound Mean Score
1 -Inf 0.7
2 0.7 1.0
3 1.0 1.3
4 1.3 1.5
5 1.5 1.8
6 1.8 2.1
7 2.1 2.4
8 2.4 2.7
9 2.7 Inf

5.3 Plot mean to norms

Code
norms <-
d_w_items %>% 
  select(ends_with("_mean")) %>% 
  map(~ compute_all_norms(., 
                          min_score = 0, 
                          max_score = 3, 
                          by = .1), 
      digits = 2)


p_norm1 <- 
norms %>% 
  pluck(1) %>%
  ggplot(aes(x = score, y = z)) +
  geom_line() +
  scale_y_continuous(breaks = c(-2, 0, 2)) +
  theme(strip.text = element_text(size = 14),
                axis.text = element_text(size =14))


p_norm2 <-
norms %>% 
  pluck(1) %>%
  ggplot(aes(x = score, y = stanine)) +
  geom_line() + 
  scale_y_continuous(breaks = c(1, 5, 9)) +
  theme(strip.text = element_text(size = 14),
                axis.text = element_text(size =14))


p_norm3 <-
norms %>% 
  pluck(1) %>%
  ggplot(aes(x = score, y = perc_rank)) +
  geom_line() +
  labs(y = "Percentage")  +
  scale_y_continuous(breaks = c(0, .5, 1),
                     
                     labels = c("0%", "50%", "100%")) +
  theme(strip.text = element_text(size = 14),
                axis.text = element_text(size =14))


see::plots(p_norm1, p_norm2, p_norm3, tags = TRUE,
           n_rows = 3)

Code
# 
# see::plots(p_norm1, p_norm2, p_norm3, tags = TRUE,
#            n_rows = 3,
#            title =  "FMI-13R mean value (x-axis) vs. different norm values (y-axis)")

6 Item statistics for each item

6.1 Sample size

Code
d_w_items |> 
  select(starts_with("ffa_")) |> 
  drop_na() |> 
  nrow()
[1] 1012

6.2 Descriptive statistics (1st to 4th moment)

Code
fmi14_stats <- 
d_w_items |> 
  select(starts_with("ffa_")) |> 
  describe_distribution()

fmi14_stats |> 
  mutate(ID = 1:n()) |> 
  left_join(item_labels |> 
              select(ID = nr, Label = label_en, Facet = facet_PAID_2009)) |> 
  select(ID, Label, Facet, everything(), 
         -c(IQR, n, n_Missing, Variable, Min, Max)) |> 
  tt(width = c(0.1, 0.4, .2, .1, .1, .2, .2)) |> 
  format_tt(digits = 2, num_fmt = "decimal")
Joining with `by = join_by(ID)`
ID Label Facet Mean SD Skewness Kurtosis
1 I am open to the experience of the present moment. Presence 1.91 0.85 -0.52 -0.24
2 I sense my body, whether eating, cooking, cleaning or talking. Presence 1.51 0.89 -0.01 -0.73
3 When I notice an absence of mind, I gently return to the experience of the here and now. Presence 1.42 0.86 0.03 -0.66
4 I am able to appreciate myself. Acceptance 1.89 0.86 -0.4 -0.48
5 I pay attention to what’s behind my actions. Presence 1.84 0.83 -0.43 -0.29
6 I see my mistakes and difficulties without judging them. Acceptance 1.8 0.82 -0.28 -0.43
7 I feel connected to my experience in the here-and-now. Presence 1.78 0.84 -0.39 -0.37
8 I accept unpleasant experiences. Acceptance 1.84 0.77 -0.29 -0.27
9 I am friendly to myself when things go wrong. Acceptance 1.71 0.84 -0.27 -0.46
10 I watch my feelings without gelng lost in them. Presence 1.72 0.85 -0.3 -0.49
11 In difficult situations, I can pause without immediately reacting. Acceptance 1.74 0.84 -0.28 -0.47
12 I experience moments of inner peace and ease, even when things get hectic and stressful. Acceptance 1.54 0.86 -0.07 -0.65
13 I am impatient with myself and with others. Acceptance 1.67 0.9 -0.15 -0.77
14 4 I am able to smile when I notice how I sometimes make life difficult. Acceptance 1.6 0.84 -0.14 -0.54

Note. No missing values in all items. Min=0 and Max=3 for each item.

7 Reliability

7.1 FMI14

Alpha:

Code
fmi14_alpha <- 
d_w_items |> 
  select(starts_with("ffa_", ignore.case = FALSE)) |> 
  psych::alpha()

fmi14_alpha

Reliability analysis   
Call: psych::alpha(x = select(d_w_items, starts_with("ffa_", ignore.case = FALSE)))

  raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
      0.86      0.87    0.87      0.32 6.5 0.0061  1.7 0.51     0.34

    95% confidence boundaries 
         lower alpha upper
Feldt     0.85  0.86  0.88
Duhachek  0.85  0.86  0.88

 Reliability if an item is dropped:
        raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
ffa_1        0.86      0.86    0.86      0.32 6.1   0.0065 0.024  0.36
ffa_2        0.86      0.86    0.86      0.32 6.1   0.0064 0.023  0.35
ffa_3        0.86      0.86    0.87      0.32 6.2   0.0064 0.023  0.36
ffa_4        0.85      0.85    0.86      0.31 5.9   0.0067 0.024  0.34
ffa_5        0.85      0.85    0.86      0.31 5.7   0.0068 0.023  0.34
ffa_6        0.85      0.85    0.86      0.31 5.8   0.0068 0.023  0.34
ffa_7        0.85      0.85    0.86      0.31 5.7   0.0068 0.022  0.34
ffa_8        0.86      0.86    0.86      0.32 6.1   0.0065 0.024  0.35
ffa_9        0.85      0.85    0.86      0.31 5.8   0.0068 0.023  0.34
ffa_10       0.85      0.85    0.86      0.31 5.7   0.0068 0.023  0.34
ffa_11       0.85      0.85    0.86      0.30 5.7   0.0068 0.023  0.34
ffa_12       0.85      0.85    0.86      0.31 5.8   0.0068 0.023  0.34
ffa_13r      0.88      0.88    0.88      0.37 7.6   0.0054 0.005  0.36
ffa_14       0.86      0.86    0.86      0.32 6.0   0.0065 0.024  0.34

 Item statistics 
           n raw.r std.r  r.cor  r.drop mean   sd
ffa_1   1012  0.58  0.58 0.5305  0.4946  1.9 0.85
ffa_2   1012  0.56  0.55 0.5048  0.4626  1.5 0.89
ffa_3   1012  0.54  0.54 0.4861  0.4470  1.4 0.86
ffa_4   1012  0.65  0.65 0.6185  0.5736  1.9 0.86
ffa_5   1012  0.69  0.69 0.6720  0.6253  1.8 0.83
ffa_6   1012  0.67  0.68 0.6519  0.6045  1.8 0.82
ffa_7   1012  0.70  0.70 0.6800  0.6318  1.8 0.84
ffa_8   1012  0.57  0.58 0.5261  0.4883  1.8 0.77
ffa_9   1012  0.68  0.68 0.6553  0.6080  1.7 0.84
ffa_10  1012  0.69  0.69 0.6709  0.6241  1.7 0.85
ffa_11  1012  0.70  0.70 0.6823  0.6371  1.7 0.84
ffa_12  1012  0.69  0.69 0.6593  0.6139  1.5 0.86
ffa_13r 1012  0.12  0.11 0.0053 -0.0048  1.7 0.90
ffa_14  1012  0.60  0.60 0.5500  0.5124  1.6 0.84

Non missing response frequency for each item
           0    1    2    3 miss
ffa_1   0.07 0.20 0.48 0.25    0
ffa_2   0.13 0.36 0.37 0.14    0
ffa_3   0.15 0.39 0.37 0.10    0
ffa_4   0.06 0.24 0.45 0.25    0
ffa_5   0.07 0.23 0.49 0.21    0
ffa_6   0.06 0.27 0.47 0.20    0
ffa_7   0.08 0.24 0.49 0.19    0
ffa_8   0.04 0.26 0.51 0.19    0
ffa_9   0.08 0.29 0.47 0.16    0
ffa_10  0.09 0.27 0.46 0.17    0
ffa_11  0.08 0.28 0.46 0.18    0
ffa_12  0.12 0.35 0.40 0.13    0
ffa_13r 0.10 0.32 0.39 0.19    0
ffa_14  0.10 0.34 0.43 0.13    0
Code
fmi14_alpha[["item.stats"]] |> str()
'data.frame':   14 obs. of  7 variables:
 $ n     : num  1012 1012 1012 1012 1012 ...
 $ raw.r : num  0.582 0.558 0.541 0.651 0.694 ...
 $ std.r : num  0.582 0.554 0.539 0.651 0.695 ...
 $ r.cor : num  0.53 0.505 0.486 0.619 0.672 ...
 $ r.drop: num  0.495 0.463 0.447 0.574 0.625 ...
 $ mean  : num  1.91 1.51 1.42 1.89 1.84 ...
 $ sd    : num  0.848 0.889 0.86 0.855 0.835 ...

Item statistics:

Code
fmi14_desc1 <- 
d_w_items |> 
  select(starts_with("ffa_", ignore.case = FALSE)) |> 
  psych::alpha()

col_names <- c("Nr.", "*r<sub>it</sub>*", "*r<sub>it</sub> dropped*")

fmi14_desc1[["item.stats"]] |> 
  mutate(nr = 1:14) |> 
  select(nr, r.cor, r.drop) |> 
    kable(col.names = col_names, escape = FALSE, digits = 2, row.names = FALSE)
Nr. rit rit dropped
1 0.53 0.49
2 0.50 0.46
3 0.49 0.45
4 0.62 0.57
5 0.67 0.63
6 0.65 0.60
7 0.68 0.63
8 0.53 0.49
9 0.66 0.61
10 0.67 0.62
11 0.68 0.64
12 0.66 0.61
13 0.01 0.00
14 0.55 0.51

Omega:

Code
fmi14_omega <- 
d_w_items |> 
  select(starts_with("ffa_", ignore.case = FALSE)) |> 
  psych::omega(nfactors = 1)
Loading required namespace: GPArotation
Omega_h for 1 factor is not meaningful, just omega_t
Warning in schmid(m, nfactors, fm, digits, rotate = rotate, n.obs = n.obs, :
Omega_h and Omega_asymptotic are not meaningful with one factor
Code
fmi14_omega
Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.87 
G.6:                   0.87 
Omega Hierarchical:    0.87 
Omega H asymptotic:    1 
Omega Total            0.87 

Schmid Leiman Factor loadings greater than  0.2 
           g  F1*   h2   h2   u2 p2 com
ffa_1   0.53      0.28 0.28 0.72  1   1
ffa_2   0.51      0.26 0.26 0.74  1   1
ffa_3   0.49      0.24 0.24 0.76  1   1
ffa_4   0.61      0.37 0.37 0.63  1   1
ffa_5   0.67      0.45 0.45 0.55  1   1
ffa_6   0.65      0.43 0.43 0.57  1   1
ffa_7   0.69      0.47 0.47 0.53  1   1
ffa_8   0.53      0.28 0.28 0.72  1   1
ffa_9   0.65      0.42 0.42 0.58  1   1
ffa_10  0.67      0.45 0.45 0.55  1   1
ffa_11  0.67      0.45 0.45 0.55  1   1
ffa_12  0.66      0.43 0.43 0.57  1   1
ffa_13r                0.00 1.00  1   1
ffa_14  0.56      0.31 0.31 0.69  1   1

With Sums of squares  of:
  g F1*  h2 
4.9 0.0 1.9 

general/max  2.55   max/min =   1.939515e+16
mean percent general =  1    with sd =  0 and cv of  0 
Explained Common Variance of the general factor =  1 

The degrees of freedom are 77  and the fit is  0.4 
The number of observations was  1012  with Chi Square =  402.03  with prob <  1.7e-45
The root mean square of the residuals is  0.05 
The df corrected root mean square of the residuals is  0.05
RMSEA index =  0.065  and the 10 % confidence intervals are  0.058 0.071
BIC =  -130.78

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 77  and the fit is  0.4 
The number of observations was  1012  with Chi Square =  402.03  with prob <  1.7e-45
The root mean square of the residuals is  0.05 
The df corrected root mean square of the residuals is  0.05 

RMSEA index =  0.065  and the 10 % confidence intervals are  0.058 0.071
BIC =  -130.78 

Measures of factor score adequacy             
                                                 g F1*
Correlation of scores with factors            0.94   0
Multiple R square of scores with factors      0.89   0
Minimum correlation of factor score estimates 0.78  -1

 Total, General and Subset omega for each subset
                                                 g  F1*
Omega total for total scores and subscales    0.87 0.87
Omega general for total scores and subscales  0.87 0.87
Omega group for total scores and subscales    0.00 0.00

7.2 FMI13-R

Sample size:

Code
d_w_items |> 
  select(starts_with("ffa_", ignore.case = FALSE)) |> 
  select(-ffa_13r) |> 
  drop_na() |> 
  nrow()
[1] 1012

Items stats:

Code
fmi13_desc1 <- 
d_w_items |> 
  select(starts_with("ffa_", ignore.case = FALSE)) |> 
  select(-ffa_13r) |> 
  psych::alpha()

col_names <- c("ID",  "r<sub>it</sub>", "r<sub>it</sub> dropped")

fmi13_desc1[["item.stats"]] |> 
  mutate(nr = c(1:12, 14)) |> 
  select(ID = nr, r.cor, r.drop) |> 
  set_names(col_names) |> 
  tt(digits = 2, width = .7) |> 
  style_tt(i = 0, j = c(2,3), italic = TRUE)
ID rit rit dropped
1 0.53 0.5
2 0.52 0.49
3 0.5 0.47
4 0.61 0.57
5 0.67 0.63
6 0.65 0.61
7 0.68 0.64
8 0.53 0.5
9 0.64 0.6
10 0.67 0.63
11 0.67 0.63
12 0.66 0.62
14 0.56 0.52

Omega:

Code
fmi13_omega <- 
d_w_items |> 
  select(starts_with("ffa_", ignore.case = FALSE)) |> 
  select(-ffa_13r) |> 
  psych::omega(nfactors = 1)
Omega_h for 1 factor is not meaningful, just omega_t
Warning in schmid(m, nfactors, fm, digits, rotate = rotate, n.obs = n.obs, :
Omega_h and Omega_asymptotic are not meaningful with one factor
Warning in cov2cor(t(w) %*% r %*% w): diag(V) had non-positive or NA entries;
the non-finite result may be dubious
Code
fmi13_omega
Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.88 
G.6:                   0.88 
Omega Hierarchical:    0.88 
Omega H asymptotic:    1 
Omega Total            0.88 

Schmid Leiman Factor loadings greater than  0.2 
          g  F1*   h2   h2   u2 p2 com
ffa_1  0.53      0.28 0.28 0.72  1   1
ffa_2  0.51      0.26 0.26 0.74  1   1
ffa_3  0.49      0.24 0.24 0.76  1   1
ffa_4  0.61      0.37 0.37 0.63  1   1
ffa_5  0.67      0.45 0.45 0.55  1   1
ffa_6  0.65      0.43 0.43 0.57  1   1
ffa_7  0.69      0.47 0.47 0.53  1   1
ffa_8  0.53      0.28 0.28 0.72  1   1
ffa_9  0.65      0.42 0.42 0.58  1   1
ffa_10 0.67      0.45 0.45 0.55  1   1
ffa_11 0.67      0.45 0.45 0.55  1   1
ffa_12 0.66      0.43 0.43 0.57  1   1
ffa_14 0.56      0.31 0.31 0.69  1   1

With Sums of squares  of:
  g F1*  h2 
4.9 0.0 1.9 

general/max  2.55   max/min =   Inf
mean percent general =  1    with sd =  0 and cv of  0 
Explained Common Variance of the general factor =  1 

The degrees of freedom are 65  and the fit is  0.32 
The number of observations was  1012  with Chi Square =  323.71  with prob <  5.3e-36
The root mean square of the residuals is  0.04 
The df corrected root mean square of the residuals is  0.05
RMSEA index =  0.063  and the 10 % confidence intervals are  0.056 0.07
BIC =  -126.07

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 65  and the fit is  0.32 
The number of observations was  1012  with Chi Square =  323.71  with prob <  5.3e-36
The root mean square of the residuals is  0.04 
The df corrected root mean square of the residuals is  0.05 

RMSEA index =  0.063  and the 10 % confidence intervals are  0.056 0.07
BIC =  -126.07 

Measures of factor score adequacy             
                                                 g F1*
Correlation of scores with factors            0.94   0
Multiple R square of scores with factors      0.89   0
Minimum correlation of factor score estimates 0.78  -1

 Total, General and Subset omega for each subset
                                                 g  F1*
Omega total for total scores and subscales    0.88 0.88
Omega general for total scores and subscales  0.88 0.88
Omega group for total scores and subscales    0.00 0.00

8 CFA

rename the items for the sake of brevity:

Code
fmi_items <- 
 d_w_items %>%
  select(starts_with("ffa"), mindfulness_experience) |> 
  rename_with(~ gsub("^ffa_(\\d+[a-zA-Z]?)$", "i\\1", .), 
              starts_with("ffa_"))

8.1 Setup

Code
cfa_results <- list()
cfa_subscales_results <- list()

8.1.1 Tetrachoric correlation matrix

Code
polychoric_r <- polychoric(fmi_items |> select(-mindfulness_experience))

polychoric_rho <- polychoric_r$rho

polychoric_rho[lower.tri(polychoric_r$rho, diag = FALSE)] <- NA

polychoric_rho |> kable( digits = 2)
i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13r i14
i1 1 0.4 0.34 0.35 0.40 0.37 0.48 0.38 0.38 0.40 0.39 0.36 -0.01 0.36
i2 NA 1.0 0.48 0.31 0.44 0.30 0.41 0.32 0.28 0.39 0.35 0.39 -0.15 0.35
i3 NA NA 1.00 0.30 0.39 0.31 0.40 0.29 0.29 0.41 0.33 0.40 -0.15 0.34
i4 NA NA NA 1.00 0.55 0.57 0.47 0.33 0.51 0.43 0.49 0.45 0.09 0.40
i5 NA NA NA NA 1.00 0.53 0.53 0.39 0.43 0.58 0.53 0.46 0.03 0.40
i6 NA NA NA NA NA 1.00 0.56 0.42 0.51 0.47 0.50 0.47 0.03 0.42
i7 NA NA NA NA NA NA 1.00 0.50 0.49 0.51 0.49 0.49 -0.03 0.42
i8 NA NA NA NA NA NA NA 1.00 0.43 0.43 0.41 0.39 -0.04 0.30
i9 NA NA NA NA NA NA NA NA 1.00 0.54 0.55 0.57 0.11 0.43
i10 NA NA NA NA NA NA NA NA NA 1.00 0.56 0.50 0.01 0.40
i11 NA NA NA NA NA NA NA NA NA NA 1.00 0.56 0.14 0.43
i12 NA NA NA NA NA NA NA NA NA NA NA 1.00 0.02 0.49
i13r NA NA NA NA NA NA NA NA NA NA NA NA 1.00 -0.06
i14 NA NA NA NA NA NA NA NA NA NA NA NA NA 1.00

8.2 One general mindfulness factor, including item 13

Code
FMI14 <- 
  "General_Factor=~i1+i2+i3+i4+i5+i6+i7+i8+i9+i10+i11+i12+i13r+i14"

8.2.1 items as numerical

Code
one_factor_numeric <- cfa(FMI14, data = fmi_items)

  cfa_results[["FMI-14, numeric"]] <- 
  get_results_list(one_factor_numeric,
                   model_name = "FMI-14, numeric")

8.2.2 items as categorical, Pearson

Code
one_factor_ordered_pearson <- 
  cfa(FMI14, 
      data = fmi_items,
      estimator = "WLSMV",
      ordered = TRUE)

cfa_results[["FMI-14, ordered, Pearson"]] <- 
  get_results_list(one_factor_ordered_pearson,
                   model_name = "FMI-14, ordered, Pearson")

8.2.3 items as categorical, Polychoric

Code
one_factor_ordered_polychoric <- 
  cfa(FMI14, 
      data = fmi_items,
      estimator = "WLSMV",
      sample.cov = polychoric_rho,
      ordered = TRUE)

cfa_results[["FMI-14, ordered, polychoric"]] <- 
  get_results_list(one_factor_ordered_polychoric,
                   model_name = "FMI-14, ordered, polychoric")

8.2.4 items as categorical, Polychoric, mindfulness practitioners only

Code
one_factor_ordered_polychoric_practitioners <- cfa(FMI14, 
                                     data = fmi_items |> filter(mindfulness_experience == 1),
                                      estimator = "WLSMV",
                                      sample.cov = polychoric_rho,
                                      ordered = TRUE)

cfa_results[["FMI-14, ordered, polychoric, mindfulness practitioners"]] <- 
  get_results_list(one_factor_ordered_polychoric_practitioners,
                   model_name = "FMI-14, ordered, polychoric, mindfulness practitioners")

8.2.5 NONpractitioners, items as categorical, Polychoric, mindfulness nonpractitioners only

Code
one_factor_ordered_polychoric_nonpractitioners <- cfa(FMI14, 
                                     data = fmi_items |> filter(mindfulness_experience == 0),
                                      estimator = "WLSMV",
                                      sample.cov = polychoric_rho,
                                      ordered = TRUE)

cfa_results[["FMI-14, ordered, polychoric, mindfulness nonpractitioners"]] <- 
  get_results_list(one_factor_ordered_polychoric_nonpractitioners,
                   model_name = "FMI-14, ordered, polychoric, mindfulness nonpractitioners")

8.3 Two factors (presence, acceptance) without item 13, correlated factors

Code
FMI13R <- "
# Presence:
presence =~ i1 + i2 + i3 + i5 + i7 + i10 

acceptance =~ i4 + i6 + i8 + i9 + i11 + i12 + i14

presence ~~ acceptance
"

8.3.1 items as numeric

Code
two_factors_numeric <- cfa(FMI13R,
                           data = fmi_items)

cfa_results[["FMI-13R, numeric"]] <-
  get_results_list(two_factors_numeric,
                   model_name = "FMI-13R, numeric")

8.3.2 items as categorical, Pearson

Code
model_two_dim_wo_13_ordered <- cfa(FMI13R,
                                   data = fmi_items,
                                   estimator = "WLSMV",
                                   ordered = TRUE)


cfa_results[["FMI-13R, ordered, Pearson"]] <-
  get_results_list(model_two_dim_wo_13_ordered,
                   model_name = "FMI-13R, ordered, Pearson")

8.3.3 items as categorical, Polychoric

This model fits best the the makeup of the scale.

Code
model_two_dim_wo_13_ordered_poly<- cfa(FMI13R,
                                   data = fmi_items,
                                   estimator = "WLSMV",
                                   sample.cov = polychoric_rho,
                                   ordered = TRUE)


cfa_results[["FMI-13R, ordered, polychoric"]] <-
  get_results_list(model_two_dim_wo_13_ordered_poly,
                   "FMI-13R, ordered, polychoric")

8.3.3.1 Summary

Code
summary(model_two_dim_wo_13_ordered_poly, standardized = TRUE)
lavaan 0.6-19 ended normally after 30 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of model parameters                        53

  Number of observations                          1012

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               228.363     419.697
  Degrees of freedom                                64          64
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.555
  Shift parameter                                            7.946
    simple second-order correction                                

Parameter Estimates:

  Parameterization                               Delta
  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence =~                                                           
    i1                1.000                               0.591    0.591
    i2                0.962    0.049   19.693    0.000    0.568    0.568
    i3                0.933    0.046   20.162    0.000    0.551    0.551
    i5                1.255    0.052   24.004    0.000    0.742    0.742
    i7                1.281    0.051   25.256    0.000    0.757    0.757
    i10               1.254    0.051   24.784    0.000    0.741    0.741
  acceptance =~                                                         
    i4                1.000                               0.680    0.680
    i6                1.060    0.031   34.041    0.000    0.721    0.721
    i8                0.870    0.038   23.140    0.000    0.592    0.592
    i9                1.052    0.033   31.929    0.000    0.716    0.716
    i11               1.083    0.035   30.499    0.000    0.737    0.737
    i12               1.061    0.035   30.617    0.000    0.722    0.722
    i14               0.891    0.037   23.857    0.000    0.606    0.606

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence ~~                                                           
    acceptance        0.372    0.020   18.832    0.000    0.926    0.926

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    i1|t1            -1.475    0.060  -24.691    0.000   -1.475   -1.475
    i1|t2            -0.620    0.042  -14.648    0.000   -0.620   -0.620
    i1|t3             0.681    0.043   15.859    0.000    0.681    0.681
    i2|t1            -1.120    0.050  -22.460    0.000   -1.120   -1.120
    i2|t2            -0.012    0.039   -0.314    0.753   -0.012   -0.012
    i2|t3             1.088    0.049   22.118    0.000    1.088    1.088
    i3|t1            -1.044    0.048  -21.612    0.000   -1.044   -1.044
    i3|t2             0.084    0.039    2.136    0.033    0.084    0.084
    i3|t3             1.283    0.054   23.845    0.000    1.283    1.283
    i5|t1            -1.467    0.059  -24.674    0.000   -1.467   -1.467
    i5|t2            -0.532    0.042  -12.811    0.000   -0.532   -0.532
    i5|t3             0.805    0.044   18.115    0.000    0.805    0.805
    i7|t1            -1.392    0.057  -24.429    0.000   -1.392   -1.392
    i7|t2            -0.453    0.041  -11.081    0.000   -0.453   -0.453
    i7|t3             0.883    0.046   19.381    0.000    0.883    0.883
    i10|t1           -1.347    0.056  -24.225    0.000   -1.347   -1.347
    i10|t2           -0.349    0.040   -8.654    0.000   -0.349   -0.349
    i10|t3            0.943    0.046   20.276    0.000    0.943    0.943
    i4|t1            -1.528    0.062  -24.777    0.000   -1.528   -1.528
    i4|t2            -0.529    0.041  -12.750    0.000   -0.529   -0.529
    i4|t3             0.662    0.043   15.497    0.000    0.662    0.662
    i6|t1            -1.552    0.063  -24.796    0.000   -1.552   -1.552
    i6|t2            -0.434    0.041  -10.646    0.000   -0.434   -0.434
    i6|t3             0.857    0.045   18.982    0.000    0.857    0.857
    i8|t1            -1.712    0.070  -24.605    0.000   -1.712   -1.712
    i8|t2            -0.518    0.041  -12.503    0.000   -0.518   -0.518
    i8|t3             0.883    0.046   19.381    0.000    0.883    0.883
    i9|t1            -1.385    0.057  -24.402    0.000   -1.385   -1.385
    i9|t2            -0.330    0.040   -8.217    0.000   -0.330   -0.330
    i9|t3             0.978    0.047   20.767    0.000    0.978    0.978
    i11|t1           -1.418    0.058  -24.530    0.000   -1.418   -1.418
    i11|t2           -0.367    0.040   -9.091    0.000   -0.367   -0.367
    i11|t3            0.920    0.046   19.944    0.000    0.920    0.920
    i12|t1           -1.182    0.051  -23.063    0.000   -1.182   -1.182
    i12|t2           -0.069    0.039   -1.759    0.079   -0.069   -0.069
    i12|t3            1.124    0.050   22.508    0.000    1.124    1.124
    i14|t1           -1.306    0.054  -23.991    0.000   -1.306   -1.306
    i14|t2           -0.167    0.040   -4.208    0.000   -0.167   -0.167
    i14|t3            1.106    0.050   22.315    0.000    1.106    1.106

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                0.651                               0.651    0.651
   .i2                0.677                               0.677    0.677
   .i3                0.696                               0.696    0.696
   .i5                0.450                               0.450    0.450
   .i7                0.427                               0.427    0.427
   .i10               0.451                               0.451    0.451
   .i4                0.537                               0.537    0.537
   .i6                0.480                               0.480    0.480
   .i8                0.650                               0.650    0.650
   .i9                0.488                               0.488    0.488
   .i11               0.458                               0.458    0.458
   .i12               0.479                               0.479    0.479
   .i14               0.633                               0.633    0.633
    presence          0.349    0.027   13.022    0.000    1.000    1.000
    acceptance        0.463    0.026   17.767    0.000    1.000    1.000

8.3.3.2 Latent correlation of the two subfactors

Code
std_params <- standardizedSolution(model_two_dim_wo_13_ordered_poly)
std_correlation <- std_params[std_params$lhs == "presence" & std_params$rhs == "acceptance" & std_params$op == "~~", ]
std_correlation$est
[1] 0.9258941

8.3.3.3 Plot

Code
semPaths(model_two_dim_wo_13_ordered_poly,
         what = "path",
         whatLabels = "std",
         layout = "circle",
        # sizeMan = 3,
         #style = "lisrel",
         residuals = FALSE,
         #fixed = FALSE,
         intercepts = FALSE,
         normalize = TRUE,
         thresholds = F,
         width = 12,
         height = 6,
        # rotation = 2,
        # intAtSide = TRUE,
       #  nCharNodes = 0
)
title("Two factors, ordered, polychoric")

Standardized parameters are shown (loadings, correlations).

8.4 Two correlated factors, individuals with meditation practice only

8.4.1 items as numeric

Code
model_two_dim_wo_13_meditators_only <- 
  cfa(FMI13R,
      data = fmi_items |> filter(mindfulness_experience == 1))


cfa_results[["FMI-13R, numeric, mindfulness practitioners"]] <-
  get_results_list(model_two_dim_wo_13_meditators_only,
                   model_name = "FMI-13R, numeric, mindfulness practitioners")

8.4.2 items as categorical, Pearson

Code
model_two_dim_wo_13_meditators_only_categorical <- 
  cfa(FMI13R,
      estimator = "WLSMV",
      ordered = TRUE,
      data = fmi_items |> filter(mindfulness_experience == 1))

cfa_results[["FMI-13R, ordered, Pearson, mindfulness practitioners"]] <-
  get_results_list(model_two_dim_wo_13_meditators_only_categorical,
                   model_name = "FMI-13R, ordered, Pearson, mindfulness practitioners")

8.4.3 items as categorical, polychoric

Code
model_two_dim_wo_13_meditators_only_categorical_poly <- 
  cfa(FMI13R,
      estimator = "WLSMV",
      ordered = TRUE,
      data = fmi_items |> filter(mindfulness_experience == 1))

cfa_results[["FMI-13R, ordered, polychoric, mindfulness practitioners"]] <-
  get_results_list(model_two_dim_wo_13_meditators_only_categorical_poly,
                   model_name = "FMI-13R, ordered, polychoric, mindfulness practitioners")

8.4.4 Plot

Code
semPaths(model_two_dim_wo_13_ordered_poly,
         what = "path",
         whatLabels = "stand",
         layout = "circle",
        # sizeMan = 3,
         #style = "lisrel",
         residuals = FALSE,
         #fixed = FALSE,
         intercepts = FALSE,
         normalize = FALSE,
         thresholds = F,
         width = 12,
         height = 6,
        # rotation = 2,
        # intAtSide = TRUE,
       #  nCharNodes = 0
)
title("Two factors, ordered, polychoric")

Standardized parameters are shown (loadings, correlations).

8.5 NONpractitioners, Two correlated factors, individuals withOUT meditation practice only

8.5.1 items as numeric

Code
model_two_dim_wo_13_non_meditators_only <- 
  cfa(FMI13R,
      data = fmi_items |> filter(mindfulness_experience == 0))


cfa_results[["FMI-13R, numeric, mindfulness nonpractitioners"]] <-
  get_results_list(model_two_dim_wo_13_non_meditators_only,
                   model_name = "FMI-13R, numeric, mindfulness nonpractitioners")

8.5.2 items as categorical, Pearson

Code
model_two_dim_wo_13_non_meditators_only_categorical <- 
  cfa(FMI13R,
      estimator = "WLSMV",
      ordered = TRUE,
      data = fmi_items |> filter(mindfulness_experience == 0))

cfa_results[["FMI-13R, ordered, Pearson, mindfulness nonpractitioners"]] <-
  get_results_list(model_two_dim_wo_13_non_meditators_only_categorical,
                   model_name = "FMI-13R, ordered, Pearson, mindfulness nonpractitioners")

8.5.3 items as categorical, polychoric

Code
model_two_dim_wo_13_non_meditators_only_categorical_poly <- 
  cfa(FMI13R,
      estimator = "WLSMV",
      ordered = TRUE,
      data = fmi_items |> filter(mindfulness_experience == 0))

cfa_results[["FMI-13R, ordered, polychoric, mindfulness nonpractitioners"]] <-
  get_results_list(model_two_dim_wo_13_meditators_only_categorical_poly,
                   model_name = "FMI-13R, ordered, polychoric, mindfulness nonpractitioners")

8.6 Testing essential tau equivalence

8.6.1 Congeneric model

Based on the WSLMV estimator for polychoric item correlation.

Code
model_two_dim_wo_13_ordered_poly
lavaan 0.6-19 ended normally after 30 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of model parameters                        53

  Number of observations                          1012

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               228.363     419.697
  Degrees of freedom                                64          64
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.555
  Shift parameter                                            7.946
    simple second-order correction                                

8.6.2 Tau equivalence model

Code
FMI13_tau_equiv <- "
presence =~ load_presence*i1 + load_presence*i2 + load_presence*i3 + load_presence*i5 + load_presence*i7 + load_presence*i10 

acceptance =~ load_acceptance*i4 + load_acceptance*i6 + load_acceptance*i8 + load_acceptance*i9 + load_acceptance*i11 + load_acceptance*i12 + load_acceptance*i14

presence ~~ acceptance
"
Code
model_two_dim_wo_13_ordered_poly_tau_equiv <-
  cfa(FMI13_tau_equiv,
      data = fmi_items,
      estimator = "WLSMV",
      sample.cov = polychoric_rho,
      ordered = TRUE)


cfa_results[["FMI-13R, ordered, polychoric, equal loadings"]] <-
  get_results_list(model_two_dim_wo_13_ordered_poly_tau_equiv,
                   model_name = "FMI-13R, ordered, polychoric, equal loadings")

8.6.3 Comparing model fit between congeneric and tau equivalence - whole FMI13R

8.6.3.1 Significance

Do not subtract the Likelihoods of the two models. Instead, the Satorra-Bentler scaled chi-square difference test should be used to compare the models:

Code
anova(model_two_dim_wo_13_ordered_poly,  # that's the congeneric model
      model_two_dim_wo_13_ordered_poly_tau_equiv  #  tau equivalence model
      )
Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
model_two_dim_wo_13_ordered_poly 64 NA NA 228.3628 NA NA NA
model_two_dim_wo_13_ordered_poly_tau_equiv 75 NA NA 700.0338 222.8648 11 0

8.6.3.2 Effect size

Code
fit_congeneric_measures <-
  fitMeasures(model_two_dim_wo_13_ordered_poly, 
                                       c("cfi", "rmsea"))

fit_tau_equiv_measures <- 
  fitMeasures(model_two_dim_wo_13_ordered_poly_tau_equiv, c("cfi", "rmsea"))

# Calculate the change in CFI
delta_cfi <- fit_congeneric_measures["cfi"] - fit_tau_equiv_measures["cfi"]
print(paste("Delta CFI:", round(delta_cfi, 3)))
[1] "Delta CFI: 0.02"
Code
# Calculate the change in RMSEA
delta_rmsea <- fit_tau_equiv_measures["rmsea"] - fit_congeneric_measures["rmsea"]
print(paste("Delta RMSEA:", round(delta_rmsea, 3)))
[1] "Delta RMSEA: 0.04"

8.6.4 POLY - Comparing model fit between congeneric and tau equivalence - each subscale individually and for polychoric items

8.6.4.1 Definition - Congeneric Model

Code
FMI13R_presence_congeneric <- "
# Presence:
presence =~ i1 + i2 + i3 + i5 + i7 + i10 
"

FMI13R_acceptance_congeneric <- "
acceptance =~ i4 + i6 + i8 + i9 + i11 + i12 + i14
"

8.6.4.2 CFA for Presence and Acceptance - Congeneric

Code
model_presence_wo_13_ordered_poly_congeneric <- 
  cfa(FMI13R_presence_congeneric,
      data = fmi_items,
      estimator = "WLSMV",
      sample.cov = polychoric_rho,
      ordered = TRUE)


cfa_results[["FMI-13R, Presence, ordered, polychoric"]] <-
  get_results_list(model_presence_wo_13_ordered_poly_congeneric,
                   "FMI-13R, Presence, ordered, polychoric, congeneric")
Code
model_acceptance_wo_13_ordered_poly_congeneric <- 
  cfa(FMI13R_acceptance_congeneric,
      data = fmi_items,
      estimator = "WLSMV",
      sample.cov = polychoric_rho,
      ordered = TRUE)


cfa_results[["FMI-13R, Acceptance, ordered, polychoric"]] <-
  get_results_list(model_acceptance_wo_13_ordered_poly_congeneric,
                   "FMI-13R, Acceptance, ordered, polychoric, congeneric")

8.6.4.3 Definition - Tau equivalent model

Code
FMI13R_presence_tau_equivalent <- "
# Presence:
presence =~ load_presence*i1 + load_presence*i2 + load_presence*i3 + load_presence*i5 + load_presence*i7 + load_presence*i10 
"

FMI13R_acceptance_tau_equivalent <- "
acceptance =~ load_acceptance*i4 + load_acceptance*i6 + load_acceptance*i8 + load_acceptance*i9 + load_acceptance*i11 + load_acceptance*i12 + load_acceptance*i14
"

8.6.4.4 CFA for Presence and Acceptance - Tau equivalent (polychoric)

8.6.4.4.1 Presence
Code
model_presence_wo_13_ordered_poly_tau_equiv <- 
  cfa(FMI13R_presence_tau_equivalent,
      data = fmi_items,
      estimator = "WLSMV",
      sample.cov = polychoric_rho,
      ordered = TRUE)


cfa_results[["FMI-13R, Presence, ordered, polychoric, tau equivalent"]] <-
  get_results_list(model_presence_wo_13_ordered_poly_tau_equiv,
                   "FMI-13R, Presence, ordered, polychoric, tau equivalent")
8.6.4.4.2 Acceptance
Code
model_acceptance_wo_13_ordered_poly_tau_equiv <- 
  cfa(FMI13R_acceptance_tau_equivalent,
      data = fmi_items,
      estimator = "WLSMV",
      sample.cov = polychoric_rho,
      ordered = TRUE)


cfa_results[["FMI-13R, Acceptance, ordered, polychoric, tau equivalent"]] <-
  get_results_list(model_acceptance_wo_13_ordered_poly_tau_equiv,
                   "FMI-13R, Acceptance, ordered, polychoric, tau equivalent")

8.6.4.5 Significance - Presence

Do not subtract the Likelihoods of the two models. Instead, the Satorra-Bentler scaled chi-square difference test should be used to compare the models:

Code
anova(model_presence_wo_13_ordered_poly_congeneric,  # that's the congeneric model
      model_presence_wo_13_ordered_poly_tau_equiv  #  tau equivalence model
      )
Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
model_presence_wo_13_ordered_poly_congeneric 9 NA NA 46.13306 NA NA NA
model_presence_wo_13_ordered_poly_tau_equiv 14 NA NA 99.75258 49.21699 5 0

8.6.4.6 Effect size - Presence

Code
fit_congeneric_measures_presence <-
  fitMeasures(model_presence_wo_13_ordered_poly_congeneric, 
                                       c("cfi", "rmsea"))

fit_tau_equiv_measures_presence <- 
  fitMeasures(model_presence_wo_13_ordered_poly_tau_equiv, 
              c("cfi", "rmsea"))

# Calculate the change in CFI
delta_cfi_presence <- 
  fit_congeneric_measures_presence["cfi"] - 
  fit_tau_equiv_measures_presence["cfi"]
print(paste("Delta CFI:", round(delta_cfi_presence, 3)))
[1] "Delta CFI: 0.01"
Code
# Calculate the change in RMSEA
delta_rmsea_presence <- 
  fit_congeneric_measures_presence["rmsea"] -
  fit_tau_equiv_measures_presence["rmsea"]
print(paste("Delta RMSEA:", round(delta_rmsea_presence, 3)))
[1] "Delta RMSEA: -0.014"

8.6.4.7 Significance - Acceptance

Do not subtract the Likelihoods of the two models. Instead, the Satorra-Bentler scaled chi-square difference test should be used to compare the models:

Code
anova(model_acceptance_wo_13_ordered_poly_congeneric,  # that's the congeneric model
      model_acceptance_wo_13_ordered_poly_tau_equiv  #  tau equivalence model
      )
Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
model_acceptance_wo_13_ordered_poly_congeneric 14 NA NA 34.57679 NA NA NA
model_acceptance_wo_13_ordered_poly_tau_equiv 20 NA NA 167.52972 110.3603 6 0

8.6.4.8 Effect size - Acceptance

Code
fit_congeneric_measures_acceptance <-
  fitMeasures(model_acceptance_wo_13_ordered_poly_congeneric, 
                                       c("cfi", "rmsea"))

fit_tau_equiv_measures_acceptance <- 
  fitMeasures(model_acceptance_wo_13_ordered_poly_tau_equiv,
              c("cfi", "rmsea"))

# Calculate the change in CFI
delta_cfi_acceptance <- 
  fit_congeneric_measures_acceptance["cfi"] -
  fit_tau_equiv_measures_acceptance["cfi"]
print(paste("Delta CFI:", round(delta_cfi_acceptance, 3)))
[1] "Delta CFI: 0.017"
Code
# Calculate the change in RMSEA
delta_rmsea_acceptance <- 
  fit_congeneric_measures_acceptance["rmsea"] -
  fit_tau_equiv_measures_acceptance["rmsea"]
print(paste("Delta RMSEA:", round(delta_rmsea_acceptance, 3)))
[1] "Delta RMSEA: -0.047"

8.6.5 NUM - Comparing model fit between congeneric and tau equivalence - each subscale individually and for NUMERIC items

8.6.5.1 CFA for Presence and Acceptance - Congeneric, numeric items

Code
# presence:

model_presence_wo_13_numeric_congeneric <- 
  cfa(FMI13R_presence_congeneric,
      data = fmi_items)

cfa_results[["FMI-13R, Presence, numeric"]] <-
  get_results_list(model_presence_wo_13_numeric_congeneric,
                   "FMI-13R, Presence, numeric, congeneric")

# acceptance:

model_acceptance_wo_13_numeric_congeneric <- 
  cfa(FMI13R_acceptance_congeneric,
      data = fmi_items)

cfa_results[["FMI-13R, Acceptance, numeric"]] <-
  get_results_list(model_acceptance_wo_13_numeric_congeneric,
                   "FMI-13R, Acceptance, numeric, congeneric")

8.6.5.2 CFA for Presence and Acceptance - Tau equivalent, numeric items

8.6.5.2.1 Presence
Code
model_presence_wo_13_numeric_tau_equiv <- 
  cfa(FMI13R_presence_tau_equivalent,
      data = fmi_items)

cfa_results[["FMI-13R, Presence, numeric, tau equivalent"]] <-
  get_results_list(model_presence_wo_13_numeric_tau_equiv,
                   "FMI-13R, Presence, numeric, tau equivalent")
8.6.5.2.2 Acceptance
Code
model_acceptance_wo_13_numeric_tau_equiv <- 
  cfa(FMI13R_acceptance_tau_equivalent,
      data = fmi_items)

cfa_results[["FMI-13R, Acceptance, numeric, tau equivalent"]] <-
  get_results_list(model_acceptance_wo_13_numeric_tau_equiv,
                   "FMI-13R, Acceptance, numeric, tau equivalent")

8.6.5.3 Significance - Presence, numeric

Do not subtract the Likelihoods of the two models. Instead, the Satorra-Bentler scaled chi-square difference test should be used to compare the models:

Code
anova(model_presence_wo_13_numeric_congeneric,  # that's the congeneric model
      model_presence_wo_13_numeric_tau_equiv  #  tau equivalence model
      )
Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
model_presence_wo_13_numeric_congeneric 9 13979.85 14038.89 58.22550 NA NA NA NA
model_presence_wo_13_numeric_tau_equiv 14 13987.87 14022.30 76.24312 18.01762 0.0507213 5 0.0029244

8.6.5.4 Effect size - Presence, numeric

Code
fit_congeneric_measures_presence_numeric <-
  fitMeasures(model_presence_wo_13_numeric_congeneric, 
                                       c("cfi", "rmsea"))

fit_tau_equiv_measures_presence_numeric <- 
  fitMeasures(model_presence_wo_13_numeric_tau_equiv, c("cfi", "rmsea"))

# Calculate the change in CFI
delta_cfi_presence_numeric <-
  fit_congeneric_measures_presence_numeric["cfi"] -
  fit_tau_equiv_measures_presence_numeric["cfi"]
print(paste("Delta CFI:", round(delta_cfi_presence_numeric, 3)))
[1] "Delta CFI: 0.009"
Code
# Calculate the change in RMSEA
delta_rmsea_presence_numeric <-
  fit_congeneric_measures_presence_numeric["rmsea"] -
  fit_tau_equiv_measures_presence_numeric["rmsea"]
print(paste("Delta RMSEA:", round(delta_rmsea_presence_numeric, 3)))
[1] "Delta RMSEA: 0.007"

8.6.5.5 Significance - Acceptance

Do not subtract the Likelihoods of the two models. Instead, the Satorra-Bentler scaled chi-square difference test should be used to compare the models:

Code
anova(model_acceptance_wo_13_numeric_congeneric,  # that's the congeneric model
      model_acceptance_wo_13_numeric_tau_equiv  #  tau equivalence model
      )
Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
model_acceptance_wo_13_numeric_congeneric 14 15601.53 15670.40 49.82122 NA NA NA NA
model_acceptance_wo_13_numeric_tau_equiv 20 15652.74 15692.09 113.02967 63.20845 0.0970653 6 0

8.6.5.6 Effect size - Acceptance

Code
fit_congeneric_measures_acceptance_numeric <-
  fitMeasures(model_acceptance_wo_13_numeric_congeneric, 
                                       c("cfi", "rmsea"))

fit_tau_equiv_measures_acceptance_numeric <- 
  fitMeasures(model_acceptance_wo_13_numeric_tau_equiv, c("cfi", "rmsea"))

# Calculate the change in CFI
delta_cfi_acceptance_numeric <- 
  fit_congeneric_measures_acceptance_numeric["cfi"] -
  fit_tau_equiv_measures_acceptance_numeric["cfi"]
print(paste("Delta CFI:", round(delta_cfi_acceptance_numeric, 3)))
[1] "Delta CFI: 0.029"
Code
# Calculate the change in RMSEA
delta_rmsea_acceptance_numeric <- 
  fit_congeneric_measures_acceptance_numeric["rmsea"] -
  fit_tau_equiv_measures_acceptance_numeric["rmsea"]
print(paste("Delta RMSEA:", round(delta_rmsea_acceptance_numeric, 3)))
[1] "Delta RMSEA: -0.018"

8.7 CFA Results

Code
cfa_results_df <-
  do.call(rbind, lapply(cfa_results, as.data.frame))

cfa_results_prepped <- 
cfa_results_df |> 
  select(-obj_name) |> 
  rename(Model = model_name,
         CFI = cfi,
         TLI = tli,
         RMSEA = rmsea,
         SRMR = srmr) |> 
  filter(!str_detect(Model, "Pearson")) |> 
  mutate(Model = str_replace_all(Model, ", polychoric", "")) |> 
  mutate(Model = str_replace_all(Model, "mindfulness ", "")) |> 
  mutate(Nr = row_number()) |> 
  relocate(Nr, .before = everything()) |> 
  select(Nr, Model, chisq, df, pvalue, CFI, TLI, RMSEA, SRMR)


cfa_results_prepped |> 
  names() <- c("Nr", "Model", "MLR χ²", "df", "p-value", "CFI", "TLI", "RMSEA", "SRMR")

cfa_results_prepped <- 
cfa_results_prepped |> 
  rownames_to_column() 

rownames(cfa_results_prepped) <- NULL

cfa_results_prepped <- 
cfa_results_prepped |>  
  rename(model_def = rowname)

8.7.1 Static Table

Code
num_cols <- names(cfa_results_prepped)[sapply(cfa_results_prepped, is.numeric)]
  
cfa_results_prepped |> 
  select(-model_def) |> 
  kable(digits = 2, 
        row.names = FALSE,
        align = c("l", "l",
                rep("r", ncol(cfa_results_prepped) - 2)))
Nr Model MLR χ² df p-value CFI TLI RMSEA SRMR
1 FMI-14, numeric 404.37 77 0.00 0.92 0.91 0.06 0.04
2 FMI-14, ordered 357.41 77 0.00 0.99 0.99 0.06 0.05
3 FMI-14, ordered, practitioners 112.63 77 0.01 1.00 1.00 0.03 0.04
4 FMI-14, ordered, nonpractitioners 310.26 77 0.00 0.98 0.98 0.08 0.07
5 FMI-13R, numeric 280.01 64 0.00 0.95 0.94 0.06 0.04
6 FMI-13R, ordered 228.36 64 0.00 0.99 0.99 0.05 0.04
7 FMI-13R, numeric, practitioners 116.77 64 0.00 0.97 0.97 0.04 0.03
8 FMI-13R, ordered, practitioners 80.98 64 0.07 1.00 1.00 0.02 0.04
9 FMI-13R, numeric, nonpractitioners 251.75 64 0.00 0.92 0.90 0.08 0.05
10 FMI-13R, ordered, nonpractitioners 80.98 64 0.07 1.00 1.00 0.02 0.04
11 FMI-13R, ordered, equal loadings 700.03 75 0.00 0.97 0.97 0.09 0.07
12 FMI-13R, Presence, ordered, congeneric 46.13 9 0.00 0.99 0.99 0.06 0.04
13 FMI-13R, Acceptance, ordered, congeneric 34.58 14 0.00 1.00 1.00 0.04 0.03
14 FMI-13R, Presence, ordered, tau equivalent 99.75 14 0.00 0.98 0.98 0.08 0.05
15 FMI-13R, Acceptance, ordered, tau equivalent 167.53 20 0.00 0.98 0.98 0.09 0.06
16 FMI-13R, Presence, numeric, congeneric 58.23 9 0.00 0.96 0.94 0.07 0.03
17 FMI-13R, Acceptance, numeric, congeneric 49.82 14 0.00 0.98 0.97 0.05 0.02
18 FMI-13R, Presence, numeric, tau equivalent 76.24 14 0.00 0.96 0.95 0.07 0.05
19 FMI-13R, Acceptance, numeric, tau equivalent 113.03 20 0.00 0.95 0.95 0.07 0.08

8.7.2 Interactive Table

8.7.2.1 Reactable

Code
cfa_results_prepped |> 
  select(-model_def) |> 
  reactable(
    columns = setNames(
      lapply(num_cols, function(x) colDef(format = colFormat(digits = 2))),
      num_cols
    ),
    searchable = TRUE,
    filterable = TRUE,
    sortable = TRUE,
    pagination = TRUE)

8.7.2.2 Datatable

Code
#datatable(data.frame())  # Initialize JS renderer
cfa_results_prepped_datatable <- 
cfa_results_prepped |> 
  select(-model_def) |> 
  DT::datatable(filter = "top") %>%
  formatRound(columns = num_cols, digits = 2)

print(cfa_results_prepped_datatable)

9 Multi-group Confirmatory Factor Analysis (MG-CFA)

9.1 Simple multigroup

9.1.1 FMI-13R, numeric

Code
cfa_med_non_med_fmi13_numeric <- 
  cfa(model = FMI13R,
      data = fmi_items,
      group = "mindfulness_experience")

summary(cfa_med_non_med_fmi13_numeric, fit.measures= TRUE, standardized = TRUE)
lavaan 0.6-19 ended normally after 47 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        80

  Number of observations per group:                   
    0                                              510
    1                                              502

Model Test User Model:
                                                      
  Test statistic                               368.512
  Degrees of freedom                               128
  P-value (Chi-square)                           0.000
  Test statistic for each group:
    0                                          251.745
    1                                          116.767

Model Test Baseline Model:

  Test statistic                              4502.067
  Degrees of freedom                               156
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.945
  Tucker-Lewis Index (TLI)                       0.933

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -14238.185
  Loglikelihood unrestricted model (H1)     -14053.929
                                                      
  Akaike (AIC)                               28636.369
  Bayesian (BIC)                             29029.944
  Sample-size adjusted Bayesian (SABIC)      28775.858

Root Mean Square Error of Approximation:

  RMSEA                                          0.061
  90 Percent confidence interval - lower         0.054
  90 Percent confidence interval - upper         0.068
  P-value H_0: RMSEA <= 0.050                    0.007
  P-value H_0: RMSEA >= 0.080                    0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.038

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured


Group 1 [0]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence =~                                                           
    i1                1.000                               0.392    0.476
    i2                1.060    0.138    7.671    0.000    0.416    0.452
    i3                1.031    0.134    7.707    0.000    0.405    0.455
    i5                1.576    0.160    9.862    0.000    0.619    0.716
    i7                1.557    0.160    9.732    0.000    0.611    0.694
    i10               1.554    0.159    9.747    0.000    0.610    0.697
  acceptance =~                                                         
    i4                1.000                               0.546    0.647
    i6                1.074    0.079   13.620    0.000    0.587    0.711
    i8                0.785    0.073   10.792    0.000    0.429    0.540
    i9                1.123    0.082   13.722    0.000    0.614    0.718
    i11               1.205    0.084   14.311    0.000    0.658    0.758
    i12               1.104    0.084   13.211    0.000    0.603    0.685
    i14               0.932    0.076   12.198    0.000    0.509    0.622

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence ~~                                                           
    acceptance        0.192    0.024    7.986    0.000    0.896    0.896

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                1.931    0.037   52.908    0.000    1.931    2.343
   .i2                1.339    0.041   32.849    0.000    1.339    1.455
   .i3                1.243    0.039   31.548    0.000    1.243    1.397
   .i5                1.790    0.038   46.802    0.000    1.790    2.072
   .i7                1.735    0.039   44.514    0.000    1.735    1.971
   .i10               1.573    0.039   40.568    0.000    1.573    1.796
   .i4                1.861    0.037   49.802    0.000    1.861    2.205
   .i6                1.833    0.037   50.205    0.000    1.833    2.223
   .i8                1.843    0.035   52.429    0.000    1.843    2.322
   .i9                1.659    0.038   43.826    0.000    1.659    1.941
   .i11               1.710    0.038   44.438    0.000    1.710    1.968
   .i12               1.433    0.039   36.770    0.000    1.433    1.628
   .i14               1.525    0.036   42.121    0.000    1.525    1.865

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                0.526    0.035   15.175    0.000    0.526    0.773
   .i2                0.675    0.044   15.276    0.000    0.675    0.796
   .i3                0.628    0.041   15.263    0.000    0.628    0.793
   .i5                0.364    0.028   13.031    0.000    0.364    0.487
   .i7                0.401    0.030   13.384    0.000    0.401    0.518
   .i10               0.395    0.030   13.349    0.000    0.395    0.515
   .i4                0.414    0.029   14.481    0.000    0.414    0.581
   .i6                0.336    0.024   13.849    0.000    0.336    0.494
   .i8                0.446    0.030   15.123    0.000    0.446    0.708
   .i9                0.354    0.026   13.766    0.000    0.354    0.484
   .i11               0.322    0.024   13.173    0.000    0.322    0.426
   .i12               0.411    0.029   14.143    0.000    0.411    0.531
   .i14               0.410    0.028   14.667    0.000    0.410    0.613
    presence          0.154    0.029    5.301    0.000    1.000    1.000
    acceptance        0.298    0.038    7.804    0.000    1.000    1.000


Group 2 [1]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence =~                                                           
    i1                1.000                               0.549    0.631
    i2                0.897    0.079   11.402    0.000    0.492    0.602
    i3                0.793    0.075   10.598    0.000    0.435    0.551
    i5                0.954    0.078   12.198    0.000    0.524    0.654
    i7                1.012    0.079   12.736    0.000    0.555    0.692
    i10               0.963    0.078   12.296    0.000    0.528    0.661
  acceptance =~                                                         
    i4                1.000                               0.533    0.617
    i6                0.975    0.083   11.754    0.000    0.520    0.641
    i8                0.732    0.074    9.946    0.000    0.390    0.520
    i9                0.940    0.082   11.389    0.000    0.501    0.615
    i11               0.907    0.081   11.161    0.000    0.483    0.599
    i12               1.011    0.085   11.835    0.000    0.539    0.646
    i14               0.796    0.083    9.636    0.000    0.424    0.501

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence ~~                                                           
    acceptance        0.280    0.030    9.281    0.000    0.958    0.958

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                1.888    0.039   48.647    0.000    1.888    2.171
   .i2                1.687    0.037   46.215    0.000    1.687    2.063
   .i3                1.596    0.035   45.282    0.000    1.596    2.021
   .i5                1.894    0.036   53.046    0.000    1.894    2.368
   .i7                1.829    0.036   51.058    0.000    1.829    2.279
   .i10               1.871    0.036   52.444    0.000    1.871    2.341
   .i4                1.924    0.039   49.876    0.000    1.924    2.226
   .i6                1.773    0.036   48.985    0.000    1.773    2.186
   .i8                1.843    0.033   55.028    0.000    1.843    2.456
   .i9                1.763    0.036   48.513    0.000    1.763    2.165
   .i11               1.779    0.036   49.424    0.000    1.779    2.206
   .i12               1.647    0.037   44.294    0.000    1.647    1.977
   .i14               1.685    0.038   44.571    0.000    1.685    1.989

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                0.455    0.032   14.270    0.000    0.455    0.602
   .i2                0.427    0.029   14.498    0.000    0.427    0.638
   .i3                0.434    0.029   14.815    0.000    0.434    0.697
   .i5                0.366    0.026   14.054    0.000    0.366    0.572
   .i7                0.336    0.025   13.633    0.000    0.336    0.521
   .i10               0.359    0.026   13.986    0.000    0.359    0.563
   .i4                0.463    0.032   14.359    0.000    0.463    0.620
   .i6                0.388    0.027   14.151    0.000    0.388    0.590
   .i8                0.411    0.027   14.955    0.000    0.411    0.729
   .i9                0.412    0.029   14.371    0.000    0.412    0.622
   .i11               0.417    0.029   14.489    0.000    0.417    0.641
   .i12               0.404    0.029   14.097    0.000    0.404    0.582
   .i14               0.538    0.036   15.042    0.000    0.538    0.749
    presence          0.301    0.041    7.420    0.000    1.000    1.000
    acceptance        0.284    0.039    7.201    0.000    1.000    1.000
Code
fitMeasures(cfa_med_non_med_fmi13_numeric)
                 npar                  fmin                 chisq 
               80.000                 0.182               368.512 
                   df                pvalue        baseline.chisq 
              128.000                 0.000              4502.067 
          baseline.df       baseline.pvalue                   cfi 
              156.000                 0.000                 0.945 
                  tli                  nnfi                   rfi 
                0.933                 0.933                 0.900 
                  nfi                  pnfi                   ifi 
                0.918                 0.753                 0.945 
                  rni                  logl     unrestricted.logl 
                0.945            -14238.185            -14053.929 
                  aic                   bic                ntotal 
            28636.369             29029.944              1012.000 
                 bic2                 rmsea        rmsea.ci.lower 
            28775.858                 0.061                 0.054 
       rmsea.ci.upper        rmsea.ci.level          rmsea.pvalue 
                0.068                 0.900                 0.007 
       rmsea.close.h0 rmsea.notclose.pvalue     rmsea.notclose.h0 
                0.050                 0.000                 0.080 
                  rmr            rmr_nomean                  srmr 
                0.027                 0.029                 0.038 
         srmr_bentler   srmr_bentler_nomean                  crmr 
                0.038                 0.041                 0.041 
          crmr_nomean            srmr_mplus     srmr_mplus_nomean 
                0.044                 0.038                 0.041 
                cn_05                 cn_01                   gfi 
              427.769               462.724                 0.980 
                 agfi                  pgfi                   mfi 
                0.967                 0.603                 0.888 
                 ecvi 
                0.522 

9.1.2 FMI-13R, ordered, polychoric

Code
cfa_med_non_med_fmi13_ordered <- 
  cfa(model = FMI13R,
      data = fmi_items,
      estimator = "WLSMV",
      sample.cov = polychoric_rho,
      ordered = TRUE,
      std.lv = TRUE,
      group = "mindfulness_experience")

summary(cfa_med_non_med_fmi13_ordered, fit.measures= TRUE, standardized = TRUE)
lavaan 0.6-19 ended normally after 29 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of model parameters                       106

  Number of observations per group:                   
    0                                              510
    1                                              502

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               298.429     517.093
  Degrees of freedom                               128         128
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.605
  Shift parameter                                           23.499
    simple second-order correction                                
  Test statistic for each group:
    0                                          371.502     371.502
    1                                          145.590     145.590

Model Test Baseline Model:

  Test statistic                             24532.153    9549.368
  Degrees of freedom                               156         156
  P-value                                        0.000       0.000
  Scaling correction factor                                  2.595

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.993       0.959
  Tucker-Lewis Index (TLI)                       0.991       0.950
                                                                  
  Robust Comparative Fit Index (CFI)                         0.924
  Robust Tucker-Lewis Index (TLI)                            0.908

Root Mean Square Error of Approximation:

  RMSEA                                          0.051       0.078
  90 Percent confidence interval - lower         0.044       0.071
  90 Percent confidence interval - upper         0.059       0.085
  P-value H_0: RMSEA <= 0.050                    0.374       0.000
  P-value H_0: RMSEA >= 0.080                    0.000       0.292
                                                                  
  Robust RMSEA                                               0.081
  90 Percent confidence interval - lower                     0.074
  90 Percent confidence interval - upper                     0.089
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.636

Standardized Root Mean Square Residual:

  SRMR                                           0.045       0.045

Parameter Estimates:

  Parameterization                               Delta
  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured


Group 1 [0]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence =~                                                           
    i1                0.521    0.035   14.833    0.000    0.521    0.521
    i2                0.484    0.036   13.458    0.000    0.484    0.484
    i3                0.493    0.036   13.601    0.000    0.493    0.493
    i5                0.766    0.023   33.791    0.000    0.766    0.766
    i7                0.760    0.023   33.069    0.000    0.760    0.760
    i10               0.751    0.022   33.366    0.000    0.751    0.751
  acceptance =~                                                         
    i4                0.704    0.025   27.913    0.000    0.704    0.704
    i6                0.763    0.020   37.472    0.000    0.763    0.763
    i8                0.611    0.030   20.534    0.000    0.611    0.611
    i9                0.756    0.021   36.440    0.000    0.756    0.756
    i11               0.806    0.018   45.070    0.000    0.806    0.806
    i12               0.733    0.022   33.253    0.000    0.733    0.733
    i14               0.661    0.027   24.671    0.000    0.661    0.661

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence ~~                                                           
    acceptance        0.905    0.015   59.302    0.000    0.905    0.905

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    i1|t1            -1.516    0.086  -17.571    0.000   -1.516   -1.516
    i1|t2            -0.684    0.061  -11.295    0.000   -0.684   -0.684
    i1|t3             0.696    0.061   11.464    0.000    0.696    0.696
    i2|t1            -0.863    0.064  -13.532    0.000   -0.863   -0.863
    i2|t2             0.213    0.056    3.802    0.000    0.213    0.213
    i2|t3             1.187    0.072   16.394    0.000    1.187    1.187
    i3|t1            -0.760    0.062  -12.303    0.000   -0.760   -0.760
    i3|t2             0.289    0.056    5.124    0.000    0.289    0.289
    i3|t3             1.402    0.081   17.364    0.000    1.402    1.402
    i5|t1            -1.364    0.079  -17.247    0.000   -1.364   -1.364
    i5|t2            -0.447    0.058   -7.757    0.000   -0.447   -0.447
    i5|t3             0.828    0.063   13.127    0.000    0.828    0.828
    i7|t1            -1.238    0.074  -16.693    0.000   -1.238   -1.238
    i7|t2            -0.415    0.057   -7.233    0.000   -0.415   -0.415
    i7|t3             0.906    0.065   14.010    0.000    0.906    0.906
    i10|t1           -1.120    0.070  -15.938    0.000   -1.120   -1.120
    i10|t2           -0.188    0.056   -3.360    0.001   -0.188   -0.188
    i10|t3            1.129    0.071   16.005    0.000    1.129    1.129
    i4|t1            -1.516    0.086  -17.571    0.000   -1.516   -1.516
    i4|t2            -0.508    0.058   -8.716    0.000   -0.508   -0.508
    i4|t3             0.734    0.061   11.969    0.000    0.734    0.734
    i6|t1            -1.516    0.086  -17.571    0.000   -1.516   -1.516
    i6|t2            -0.502    0.058   -8.629    0.000   -0.502   -0.502
    i6|t3             0.821    0.063   13.045    0.000    0.821    0.821
    i8|t1            -1.617    0.092  -17.584    0.000   -1.617   -1.617
    i8|t2            -0.524    0.058   -8.976    0.000   -0.524   -0.524
    i8|t3             0.856    0.064   13.451    0.000    0.856    0.856
    i9|t1            -1.293    0.076  -16.966    0.000   -1.293   -1.293
    i9|t2            -0.258    0.056   -4.596    0.000   -0.258   -0.258
    i9|t3             1.016    0.067   15.084    0.000    1.016    1.016
    i11|t1           -1.282    0.076  -16.914    0.000   -1.282   -1.282
    i11|t2           -0.346    0.057   -6.092    0.000   -0.346   -0.346
    i11|t3            0.936    0.065   14.324    0.000    0.936    0.936
    i12|t1           -0.991    0.067  -14.860    0.000   -0.991   -0.991
    i12|t2            0.025    0.056    0.442    0.658    0.025    0.025
    i12|t3            1.260    0.075   16.806    0.000    1.260    1.260
    i14|t1           -1.260    0.075  -16.806    0.000   -1.260   -1.260
    i14|t2           -0.059    0.056   -1.062    0.288   -0.059   -0.059
    i14|t3            1.249    0.075   16.750    0.000    1.249    1.249

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                0.729                               0.729    0.729
   .i2                0.766                               0.766    0.766
   .i3                0.757                               0.757    0.757
   .i5                0.413                               0.413    0.413
   .i7                0.423                               0.423    0.423
   .i10               0.437                               0.437    0.437
   .i4                0.505                               0.505    0.505
   .i6                0.417                               0.417    0.417
   .i8                0.626                               0.626    0.626
   .i9                0.429                               0.429    0.429
   .i11               0.351                               0.351    0.351
   .i12               0.463                               0.463    0.463
   .i14               0.563                               0.563    0.563
    presence          1.000                               1.000    1.000
    acceptance        1.000                               1.000    1.000


Group 2 [1]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence =~                                                           
    i1                0.680    0.027   25.441    0.000    0.680    0.680
    i2                0.649    0.029   22.650    0.000    0.649    0.649
    i3                0.593    0.032   18.443    0.000    0.593    0.593
    i5                0.711    0.024   29.876    0.000    0.711    0.711
    i7                0.752    0.022   34.301    0.000    0.752    0.752
    i10               0.720    0.023   31.709    0.000    0.720    0.720
  acceptance =~                                                         
    i4                0.665    0.028   23.406    0.000    0.665    0.665
    i6                0.697    0.025   28.078    0.000    0.697    0.697
    i8                0.573    0.035   16.585    0.000    0.573    0.573
    i9                0.670    0.027   24.552    0.000    0.670    0.670
    i11               0.648    0.031   21.152    0.000    0.648    0.648
    i12               0.694    0.025   27.374    0.000    0.694    0.694
    i14               0.544    0.035   15.730    0.000    0.544    0.544

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence ~~                                                           
    acceptance        0.965    0.015   62.310    0.000    0.965    0.965

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    i1|t1            -1.435    0.083  -17.306    0.000   -1.435   -1.435
    i1|t2            -0.557    0.059   -9.395    0.000   -0.557   -0.557
    i1|t3             0.665    0.061   10.951    0.000    0.665    0.665
    i2|t1            -1.493    0.086  -17.407    0.000   -1.493   -1.493
    i2|t2            -0.242    0.057   -4.276    0.000   -0.242   -0.242
    i2|t3             0.997    0.067   14.797    0.000    0.997    0.997
    i3|t1            -1.463    0.084  -17.362    0.000   -1.463   -1.463
    i3|t2            -0.120    0.056   -2.140    0.032   -0.120   -0.120
    i3|t3             1.177    0.073   16.205    0.000    1.177    1.177
    i5|t1            -1.591    0.091  -17.457    0.000   -1.591   -1.591
    i5|t2            -0.622    0.060  -10.349    0.000   -0.622   -0.622
    i5|t3             0.782    0.063   12.475    0.000    0.782    0.782
    i7|t1            -1.591    0.091  -17.457    0.000   -1.591   -1.591
    i7|t2            -0.494    0.059   -8.433    0.000   -0.494   -0.494
    i7|t3             0.859    0.064   13.381    0.000    0.859    0.859
    i10|t1           -1.687    0.097  -17.366    0.000   -1.687   -1.687
    i10|t2           -0.522    0.059   -8.871    0.000   -0.522   -0.522
    i10|t3            0.782    0.063   12.475    0.000    0.782    0.782
    i4|t1            -1.540    0.088  -17.450    0.000   -1.540   -1.540
    i4|t2            -0.551    0.059   -9.307    0.000   -0.551   -0.551
    i4|t3             0.592    0.060    9.916    0.000    0.592    0.592
    i6|t1            -1.591    0.091  -17.457    0.000   -1.591   -1.591
    i6|t2            -0.368    0.057   -6.406    0.000   -0.368   -0.368
    i6|t3             0.896    0.065   13.784    0.000    0.896    0.896
    i8|t1            -1.827    0.107  -17.001    0.000   -1.827   -1.827
    i8|t2            -0.511    0.059   -8.696    0.000   -0.511   -0.511
    i8|t3             0.911    0.065   13.943    0.000    0.911    0.911
    i9|t1            -1.493    0.086  -17.407    0.000   -1.493   -1.493
    i9|t2            -0.405    0.058   -7.025    0.000   -0.405   -0.405
    i9|t3             0.941    0.066   14.258    0.000    0.941    0.941
    i11|t1           -1.591    0.091  -17.457    0.000   -1.591   -1.591
    i11|t2           -0.389    0.058   -6.760    0.000   -0.389   -0.389
    i11|t3            0.903    0.065   13.863    0.000    0.903    0.903
    i12|t1           -1.435    0.083  -17.306    0.000   -1.435   -1.435
    i12|t2           -0.166    0.056   -2.942    0.003   -0.166   -0.166
    i12|t3            1.005    0.068   14.873    0.000    1.005    1.005
    i14|t1           -1.355    0.079  -17.082    0.000   -1.355   -1.355
    i14|t2           -0.278    0.057   -4.899    0.000   -0.278   -0.278
    i14|t3            0.981    0.067   14.645    0.000    0.981    0.981

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                0.537                               0.537    0.537
   .i2                0.579                               0.579    0.579
   .i3                0.648                               0.648    0.648
   .i5                0.494                               0.494    0.494
   .i7                0.434                               0.434    0.434
   .i10               0.482                               0.482    0.482
   .i4                0.557                               0.557    0.557
   .i6                0.515                               0.515    0.515
   .i8                0.671                               0.671    0.671
   .i9                0.552                               0.552    0.552
   .i11               0.580                               0.580    0.580
   .i12               0.518                               0.518    0.518
   .i14               0.704                               0.704    0.704
    presence          1.000                               1.000    1.000
    acceptance        1.000                               1.000    1.000
Code
fitMeasures(cfa_med_non_med_fmi13_ordered)
                         npar                          fmin 
                      106.000                         0.147 
                        chisq                            df 
                      298.429                       128.000 
                       pvalue                  chisq.scaled 
                        0.000                       517.093 
                    df.scaled                 pvalue.scaled 
                      128.000                         0.000 
         chisq.scaling.factor                baseline.chisq 
                        0.605                     24532.153 
                  baseline.df               baseline.pvalue 
                      156.000                         0.000 
        baseline.chisq.scaled            baseline.df.scaled 
                     9549.368                       156.000 
       baseline.pvalue.scaled baseline.chisq.scaling.factor 
                        0.000                         2.595 
                          cfi                           tli 
                        0.993                         0.991 
                   cfi.scaled                    tli.scaled 
                        0.959                         0.950 
                   cfi.robust                    tli.robust 
                        0.924                         0.908 
                         nnfi                           rfi 
                        0.991                         0.985 
                          nfi                          pnfi 
                        0.988                         0.811 
                          ifi                           rni 
                        0.993                         0.993 
                  nnfi.scaled                    rfi.scaled 
                        0.950                         0.934 
                   nfi.scaled                   pnfi.scaled 
                        0.946                         0.776 
                   ifi.scaled                    rni.scaled 
                        0.959                         0.959 
                  nnfi.robust                    rni.robust 
                        0.908                         0.924 
                        rmsea                rmsea.ci.lower 
                        0.051                         0.044 
               rmsea.ci.upper                rmsea.ci.level 
                        0.059                         0.900 
                 rmsea.pvalue                rmsea.close.h0 
                        0.374                         0.050 
        rmsea.notclose.pvalue             rmsea.notclose.h0 
                        0.000                         0.080 
                 rmsea.scaled         rmsea.ci.lower.scaled 
                        0.078                         0.071 
        rmsea.ci.upper.scaled           rmsea.pvalue.scaled 
                        0.085                         0.000 
 rmsea.notclose.pvalue.scaled                  rmsea.robust 
                        0.292                         0.081 
        rmsea.ci.lower.robust         rmsea.ci.upper.robust 
                        0.074                         0.089 
          rmsea.pvalue.robust  rmsea.notclose.pvalue.robust 
                        0.000                         0.636 
                          rmr                    rmr_nomean 
                        0.038                         0.045 
                         srmr                  srmr_bentler 
                        0.045                         0.038 
          srmr_bentler_nomean                          crmr 
                        0.045                         0.040 
                  crmr_nomean                    srmr_mplus 
                        0.049                            NA 
            srmr_mplus_nomean                         cn_05 
                           NA                       526.950 
                        cn_01                           gfi 
                      570.028                         0.992 
                         agfi                          pgfi 
                        0.986                         0.543 
                          mfi                          wrmr 
                        0.919                         1.597 

9.2 Constraining the latent correlation to be equal

Code
FMI13R_cor_constrained <- "
# Presence:
presence =~ i1 + i2 + i3 + i5 + i7 + i10 

acceptance =~ i4 + i6 + i8 + i9 + i11 + i12 + i14

presence ~~ c(cor1, cor2)*acceptance
"

9.2.1 FMI-13R, numeric

Code
cfa_med_non_med_cor_constrained_numeric <- 
  cfa(model = FMI13R_cor_constrained,
      data = fmi_items,
      group = "mindfulness_experience",
      std.lv = TRUE
      )

summary(cfa_med_non_med_cor_constrained_numeric, fit.measures= TRUE, standardized = TRUE)
lavaan 0.6-19 ended normally after 20 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        80

  Number of observations per group:                   
    0                                              510
    1                                              502

Model Test User Model:
                                                      
  Test statistic                               368.512
  Degrees of freedom                               128
  P-value (Chi-square)                           0.000
  Test statistic for each group:
    0                                          251.745
    1                                          116.767

Model Test Baseline Model:

  Test statistic                              4502.067
  Degrees of freedom                               156
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.945
  Tucker-Lewis Index (TLI)                       0.933

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -14238.185
  Loglikelihood unrestricted model (H1)     -14053.929
                                                      
  Akaike (AIC)                               28636.369
  Bayesian (BIC)                             29029.944
  Sample-size adjusted Bayesian (SABIC)      28775.858

Root Mean Square Error of Approximation:

  RMSEA                                          0.061
  90 Percent confidence interval - lower         0.054
  90 Percent confidence interval - upper         0.068
  P-value H_0: RMSEA <= 0.050                    0.007
  P-value H_0: RMSEA >= 0.080                    0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.038

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured


Group 1 [0]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence =~                                                           
    i1                0.392    0.037   10.601    0.000    0.392    0.476
    i2                0.416    0.042    9.991    0.000    0.416    0.452
    i3                0.405    0.040   10.071    0.000    0.405    0.455
    i5                0.619    0.035   17.438    0.000    0.619    0.716
    i7                0.611    0.037   16.743    0.000    0.611    0.694
    i10               0.610    0.036   16.815    0.000    0.610    0.697
  acceptance =~                                                         
    i4                0.546    0.035   15.609    0.000    0.546    0.647
    i6                0.587    0.033   17.670    0.000    0.587    0.711
    i8                0.429    0.034   12.495    0.000    0.429    0.540
    i9                0.614    0.034   17.896    0.000    0.614    0.718
    i11               0.658    0.034   19.281    0.000    0.658    0.758
    i12               0.603    0.036   16.798    0.000    0.603    0.685
    i14               0.509    0.034   14.843    0.000    0.509    0.622

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence ~~                                                           
    accptnc (cor1)    0.896    0.021   43.307    0.000    0.896    0.896

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                1.931    0.037   52.908    0.000    1.931    2.343
   .i2                1.339    0.041   32.849    0.000    1.339    1.455
   .i3                1.243    0.039   31.548    0.000    1.243    1.397
   .i5                1.790    0.038   46.802    0.000    1.790    2.072
   .i7                1.735    0.039   44.514    0.000    1.735    1.971
   .i10               1.573    0.039   40.568    0.000    1.573    1.796
   .i4                1.861    0.037   49.802    0.000    1.861    2.205
   .i6                1.833    0.037   50.205    0.000    1.833    2.223
   .i8                1.843    0.035   52.429    0.000    1.843    2.322
   .i9                1.659    0.038   43.826    0.000    1.659    1.941
   .i11               1.710    0.038   44.438    0.000    1.710    1.968
   .i12               1.433    0.039   36.770    0.000    1.433    1.628
   .i14               1.525    0.036   42.121    0.000    1.525    1.865

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                0.526    0.035   15.175    0.000    0.526    0.773
   .i2                0.675    0.044   15.276    0.000    0.675    0.796
   .i3                0.628    0.041   15.263    0.000    0.628    0.793
   .i5                0.364    0.028   13.031    0.000    0.364    0.487
   .i7                0.401    0.030   13.384    0.000    0.401    0.518
   .i10               0.395    0.030   13.349    0.000    0.395    0.515
   .i4                0.414    0.029   14.481    0.000    0.414    0.581
   .i6                0.336    0.024   13.849    0.000    0.336    0.494
   .i8                0.446    0.030   15.123    0.000    0.446    0.708
   .i9                0.354    0.026   13.766    0.000    0.354    0.484
   .i11               0.322    0.024   13.173    0.000    0.322    0.426
   .i12               0.411    0.029   14.143    0.000    0.411    0.531
   .i14               0.410    0.028   14.667    0.000    0.410    0.613
    presence          1.000                               1.000    1.000
    acceptance        1.000                               1.000    1.000


Group 2 [1]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence =~                                                           
    i1                0.549    0.037   14.840    0.000    0.549    0.631
    i2                0.492    0.035   13.991    0.000    0.492    0.602
    i3                0.435    0.035   12.577    0.000    0.435    0.551
    i5                0.524    0.034   15.549    0.000    0.524    0.654
    i7                0.555    0.033   16.720    0.000    0.555    0.692
    i10               0.528    0.034   15.755    0.000    0.528    0.661
  acceptance =~                                                         
    i4                0.533    0.037   14.403    0.000    0.533    0.617
    i6                0.520    0.034   15.113    0.000    0.520    0.641
    i8                0.390    0.033   11.743    0.000    0.390    0.520
    i9                0.501    0.035   14.358    0.000    0.501    0.615
    i11               0.483    0.035   13.909    0.000    0.483    0.599
    i12               0.539    0.035   15.287    0.000    0.539    0.646
    i14               0.424    0.038   11.241    0.000    0.424    0.501

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence ~~                                                           
    accptnc (cor2)    0.958    0.019   50.760    0.000    0.958    0.958

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                1.888    0.039   48.647    0.000    1.888    2.171
   .i2                1.687    0.037   46.215    0.000    1.687    2.063
   .i3                1.596    0.035   45.282    0.000    1.596    2.021
   .i5                1.894    0.036   53.046    0.000    1.894    2.368
   .i7                1.829    0.036   51.058    0.000    1.829    2.279
   .i10               1.871    0.036   52.444    0.000    1.871    2.341
   .i4                1.924    0.039   49.876    0.000    1.924    2.226
   .i6                1.773    0.036   48.985    0.000    1.773    2.186
   .i8                1.843    0.033   55.028    0.000    1.843    2.456
   .i9                1.763    0.036   48.513    0.000    1.763    2.165
   .i11               1.779    0.036   49.424    0.000    1.779    2.206
   .i12               1.647    0.037   44.294    0.000    1.647    1.977
   .i14               1.685    0.038   44.571    0.000    1.685    1.989

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                0.455    0.032   14.270    0.000    0.455    0.602
   .i2                0.427    0.029   14.498    0.000    0.427    0.638
   .i3                0.434    0.029   14.815    0.000    0.434    0.697
   .i5                0.366    0.026   14.054    0.000    0.366    0.572
   .i7                0.336    0.025   13.633    0.000    0.336    0.521
   .i10               0.359    0.026   13.986    0.000    0.359    0.563
   .i4                0.463    0.032   14.359    0.000    0.463    0.620
   .i6                0.388    0.027   14.151    0.000    0.388    0.590
   .i8                0.411    0.027   14.955    0.000    0.411    0.729
   .i9                0.412    0.029   14.371    0.000    0.412    0.622
   .i11               0.417    0.029   14.489    0.000    0.417    0.641
   .i12               0.404    0.029   14.097    0.000    0.404    0.582
   .i14               0.538    0.036   15.042    0.000    0.538    0.749
    presence          1.000                               1.000    1.000
    acceptance        1.000                               1.000    1.000
Code
fitMeasures(cfa_med_non_med_cor_constrained_numeric)
                 npar                  fmin                 chisq 
               80.000                 0.182               368.512 
                   df                pvalue        baseline.chisq 
              128.000                 0.000              4502.067 
          baseline.df       baseline.pvalue                   cfi 
              156.000                 0.000                 0.945 
                  tli                  nnfi                   rfi 
                0.933                 0.933                 0.900 
                  nfi                  pnfi                   ifi 
                0.918                 0.753                 0.945 
                  rni                  logl     unrestricted.logl 
                0.945            -14238.185            -14053.929 
                  aic                   bic                ntotal 
            28636.369             29029.944              1012.000 
                 bic2                 rmsea        rmsea.ci.lower 
            28775.858                 0.061                 0.054 
       rmsea.ci.upper        rmsea.ci.level          rmsea.pvalue 
                0.068                 0.900                 0.007 
       rmsea.close.h0 rmsea.notclose.pvalue     rmsea.notclose.h0 
                0.050                 0.000                 0.080 
                  rmr            rmr_nomean                  srmr 
                0.027                 0.029                 0.038 
         srmr_bentler   srmr_bentler_nomean                  crmr 
                0.038                 0.041                 0.041 
          crmr_nomean            srmr_mplus     srmr_mplus_nomean 
                0.044                 0.038                 0.041 
                cn_05                 cn_01                   gfi 
              427.769               462.724                 0.980 
                 agfi                  pgfi                   mfi 
                0.967                 0.603                 0.888 
                 ecvi 
                0.522 
Code
cfa_med_non_med_cor_constrained_numeric2 <- 
  cfa(model = FMI13R,
      data = fmi_items,
      group = "mindfulness_experience",
      std.lv = TRUE,
      group.equal = c("lv.covariances")
      )

summary(cfa_med_non_med_cor_constrained_numeric2, fit.measures= TRUE, standardized = TRUE)
lavaan 0.6-19 ended normally after 20 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        80
  Number of equality constraints                     1

  Number of observations per group:                   
    0                                              510
    1                                              502

Model Test User Model:
                                                      
  Test statistic                               373.304
  Degrees of freedom                               129
  P-value (Chi-square)                           0.000
  Test statistic for each group:
    0                                          253.769
    1                                          119.535

Model Test Baseline Model:

  Test statistic                              4502.067
  Degrees of freedom                               156
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.944
  Tucker-Lewis Index (TLI)                       0.932

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -14240.581
  Loglikelihood unrestricted model (H1)     -14053.929
                                                      
  Akaike (AIC)                               28639.162
  Bayesian (BIC)                             29027.817
  Sample-size adjusted Bayesian (SABIC)      28776.906

Root Mean Square Error of Approximation:

  RMSEA                                          0.061
  90 Percent confidence interval - lower         0.054
  90 Percent confidence interval - upper         0.068
  P-value H_0: RMSEA <= 0.050                    0.006
  P-value H_0: RMSEA >= 0.080                    0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.040

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured


Group 1 [0]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence =~                                                           
    i1                0.393    0.037   10.672    0.000    0.393    0.476
    i2                0.412    0.041    9.929    0.000    0.412    0.447
    i3                0.402    0.040   10.041    0.000    0.402    0.451
    i5                0.621    0.035   17.523    0.000    0.621    0.715
    i7                0.616    0.036   16.913    0.000    0.616    0.696
    i10               0.614    0.036   16.970    0.000    0.614    0.698
  acceptance =~                                                         
    i4                0.550    0.035   15.738    0.000    0.550    0.649
    i6                0.591    0.033   17.831    0.000    0.591    0.713
    i8                0.435    0.034   12.726    0.000    0.435    0.547
    i9                0.616    0.034   17.960    0.000    0.616    0.717
    i11               0.664    0.034   19.474    0.000    0.664    0.760
    i12               0.607    0.036   16.924    0.000    0.607    0.686
    i14               0.513    0.034   14.975    0.000    0.513    0.624

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence ~~                                                           
    accptnc (.14.)    0.924    0.014   65.912    0.000    0.924    0.924

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                1.931    0.037   52.787    0.000    1.931    2.337
   .i2                1.339    0.041   32.783    0.000    1.339    1.452
   .i3                1.243    0.039   31.484    0.000    1.243    1.394
   .i5                1.790    0.038   46.560    0.000    1.790    2.062
   .i7                1.735    0.039   44.296    0.000    1.735    1.961
   .i10               1.573    0.039   40.369    0.000    1.573    1.788
   .i4                1.861    0.038   49.589    0.000    1.861    2.196
   .i6                1.833    0.037   49.947    0.000    1.833    2.212
   .i8                1.843    0.035   52.270    0.000    1.843    2.315
   .i9                1.659    0.038   43.597    0.000    1.659    1.931
   .i11               1.710    0.039   44.178    0.000    1.710    1.956
   .i12               1.433    0.039   36.594    0.000    1.433    1.620
   .i14               1.525    0.036   41.955    0.000    1.525    1.858

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                0.528    0.035   15.242    0.000    0.528    0.773
   .i2                0.681    0.044   15.352    0.000    0.681    0.801
   .i3                0.633    0.041   15.336    0.000    0.633    0.796
   .i5                0.369    0.028   13.315    0.000    0.369    0.489
   .i7                0.403    0.030   13.592    0.000    0.403    0.515
   .i10               0.397    0.029   13.567    0.000    0.397    0.513
   .i4                0.415    0.029   14.541    0.000    0.415    0.578
   .i6                0.337    0.024   13.932    0.000    0.337    0.491
   .i8                0.445    0.029   15.136    0.000    0.445    0.701
   .i9                0.358    0.026   13.887    0.000    0.358    0.486
   .i11               0.323    0.024   13.276    0.000    0.323    0.422
   .i12               0.414    0.029   14.222    0.000    0.414    0.529
   .i14               0.411    0.028   14.718    0.000    0.411    0.610
    presence          1.000                               1.000    1.000
    acceptance        1.000                               1.000    1.000


Group 2 [1]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence =~                                                           
    i1                0.548    0.037   14.799    0.000    0.548    0.632
    i2                0.490    0.035   13.896    0.000    0.490    0.601
    i3                0.433    0.035   12.476    0.000    0.433    0.550
    i5                0.522    0.034   15.468    0.000    0.522    0.655
    i7                0.552    0.033   16.606    0.000    0.552    0.691
    i10               0.524    0.034   15.587    0.000    0.524    0.659
  acceptance =~                                                         
    i4                0.531    0.037   14.319    0.000    0.531    0.617
    i6                0.516    0.034   14.969    0.000    0.516    0.639
    i8                0.386    0.033   11.571    0.000    0.386    0.516
    i9                0.500    0.035   14.313    0.000    0.500    0.617
    i11               0.481    0.035   13.812    0.000    0.481    0.599
    i12               0.538    0.035   15.254    0.000    0.538    0.649
    i14               0.420    0.038   11.085    0.000    0.420    0.498

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence ~~                                                           
    accptnc (.14.)    0.924    0.014   65.912    0.000    0.924    0.924

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                1.888    0.039   48.846    0.000    1.888    2.180
   .i2                1.687    0.036   46.385    0.000    1.687    2.070
   .i3                1.596    0.035   45.422    0.000    1.596    2.027
   .i5                1.894    0.036   53.279    0.000    1.894    2.378
   .i7                1.829    0.036   51.307    0.000    1.829    2.290
   .i10               1.871    0.036   52.677    0.000    1.871    2.351
   .i4                1.924    0.038   50.070    0.000    1.924    2.235
   .i6                1.773    0.036   49.189    0.000    1.773    2.195
   .i8                1.843    0.033   55.178    0.000    1.843    2.463
   .i9                1.763    0.036   48.702    0.000    1.763    2.174
   .i11               1.779    0.036   49.606    0.000    1.779    2.214
   .i12               1.647    0.037   44.485    0.000    1.647    1.985
   .i14               1.685    0.038   44.684    0.000    1.685    1.994

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                0.450    0.032   14.128    0.000    0.450    0.600
   .i2                0.424    0.029   14.389    0.000    0.424    0.639
   .i3                0.432    0.029   14.732    0.000    0.432    0.698
   .i5                0.363    0.026   13.909    0.000    0.363    0.571
   .i7                0.333    0.025   13.474    0.000    0.333    0.522
   .i10               0.358    0.026   13.867    0.000    0.358    0.566
   .i4                0.459    0.032   14.228    0.000    0.459    0.620
   .i6                0.386    0.028   14.025    0.000    0.386    0.592
   .i8                0.411    0.028   14.890    0.000    0.411    0.733
   .i9                0.408    0.029   14.230    0.000    0.408    0.620
   .i11               0.414    0.029   14.372    0.000    0.414    0.641
   .i12               0.399    0.029   13.929    0.000    0.399    0.579
   .i14               0.537    0.036   14.981    0.000    0.537    0.752
    presence          1.000                               1.000    1.000
    acceptance        1.000                               1.000    1.000
Code
fitMeasures(cfa_med_non_med_cor_constrained_numeric2)
                 npar                  fmin                 chisq 
               79.000                 0.184               373.304 
                   df                pvalue        baseline.chisq 
              129.000                 0.000              4502.067 
          baseline.df       baseline.pvalue                   cfi 
              156.000                 0.000                 0.944 
                  tli                  nnfi                   rfi 
                0.932                 0.932                 0.900 
                  nfi                  pnfi                   ifi 
                0.917                 0.758                 0.944 
                  rni                  logl     unrestricted.logl 
                0.944            -14240.581            -14053.929 
                  aic                   bic                ntotal 
            28639.162             29027.817              1012.000 
                 bic2                 rmsea        rmsea.ci.lower 
            28776.906                 0.061                 0.054 
       rmsea.ci.upper        rmsea.ci.level          rmsea.pvalue 
                0.068                 0.900                 0.006 
       rmsea.close.h0 rmsea.notclose.pvalue     rmsea.notclose.h0 
                0.050                 0.000                 0.080 
                  rmr            rmr_nomean                  srmr 
                0.028                 0.030                 0.040 
         srmr_bentler   srmr_bentler_nomean                  crmr 
                0.040                 0.042                 0.042 
          crmr_nomean            srmr_mplus     srmr_mplus_nomean 
                0.045                 0.039                 0.042 
                cn_05                 cn_01                   gfi 
              425.280               459.901                 0.979 
                 agfi                  pgfi                   mfi 
                0.966                 0.607                 0.886 
                 ecvi 
                0.525 

9.2.2 FMI-13R, ordered

Code
cfa_med_non_med_cor_constrained_ordered <- 
  cfa(model = FMI13R,
      data = fmi_items,
      estimator = "WLSMV",
      sample.cov = polychoric_rho,
      ordered = TRUE,
      group = "mindfulness_experience",
      std.lv = TRUE,
      group.equal = c("lv.covariances")
      )

summary(cfa_med_non_med_cor_constrained_ordered, fit.measures= TRUE, standardized = TRUE)
lavaan 0.6-19 ended normally after 19 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of model parameters                       106
  Number of equality constraints                     1

  Number of observations per group:                   
    0                                              510
    1                                              502

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               304.165     524.510
  Degrees of freedom                               129         129
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.607
  Shift parameter                                           23.809
    simple second-order correction                                
  Test statistic for each group:
    0                                          374.335     374.335
    1                                          150.175     150.175

Model Test Baseline Model:

  Test statistic                             24532.153    9549.368
  Degrees of freedom                               156         156
  P-value                                        0.000       0.000
  Scaling correction factor                                  2.595

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.993       0.958
  Tucker-Lewis Index (TLI)                       0.991       0.949
                                                                  
  Robust Comparative Fit Index (CFI)                         0.923
  Robust Tucker-Lewis Index (TLI)                            0.907

Root Mean Square Error of Approximation:

  RMSEA                                          0.052       0.078
  90 Percent confidence interval - lower         0.044       0.071
  90 Percent confidence interval - upper         0.059       0.085
  P-value H_0: RMSEA <= 0.050                    0.333       0.000
  P-value H_0: RMSEA >= 0.080                    0.000       0.319
                                                                  
  Robust RMSEA                                               0.082
  90 Percent confidence interval - lower                     0.074
  90 Percent confidence interval - upper                     0.089
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.649

Standardized Root Mean Square Residual:

  SRMR                                           0.046       0.046

Parameter Estimates:

  Parameterization                               Delta
  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured


Group 1 [0]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence =~                                                           
    i1                0.516    0.035   14.695    0.000    0.516    0.516
    i2                0.478    0.036   13.324    0.000    0.478    0.478
    i3                0.487    0.036   13.454    0.000    0.487    0.487
    i5                0.757    0.023   33.228    0.000    0.757    0.757
    i7                0.751    0.023   32.286    0.000    0.751    0.751
    i10               0.742    0.022   33.078    0.000    0.742    0.742
  acceptance =~                                                         
    i4                0.701    0.025   27.785    0.000    0.701    0.701
    i6                0.760    0.020   37.141    0.000    0.760    0.760
    i8                0.609    0.030   20.453    0.000    0.609    0.609
    i9                0.752    0.021   36.210    0.000    0.752    0.752
    i11               0.802    0.018   44.696    0.000    0.802    0.802
    i12               0.730    0.022   33.029    0.000    0.730    0.730
    i14               0.659    0.027   24.540    0.000    0.659    0.659

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence ~~                                                           
    accptnc (.14.)    0.932    0.011   85.796    0.000    0.932    0.932

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    i1|t1            -1.516    0.086  -17.571    0.000   -1.516   -1.516
    i1|t2            -0.684    0.061  -11.295    0.000   -0.684   -0.684
    i1|t3             0.696    0.061   11.464    0.000    0.696    0.696
    i2|t1            -0.863    0.064  -13.532    0.000   -0.863   -0.863
    i2|t2             0.213    0.056    3.802    0.000    0.213    0.213
    i2|t3             1.187    0.072   16.394    0.000    1.187    1.187
    i3|t1            -0.760    0.062  -12.303    0.000   -0.760   -0.760
    i3|t2             0.289    0.056    5.124    0.000    0.289    0.289
    i3|t3             1.402    0.081   17.364    0.000    1.402    1.402
    i5|t1            -1.364    0.079  -17.247    0.000   -1.364   -1.364
    i5|t2            -0.447    0.058   -7.757    0.000   -0.447   -0.447
    i5|t3             0.828    0.063   13.127    0.000    0.828    0.828
    i7|t1            -1.238    0.074  -16.693    0.000   -1.238   -1.238
    i7|t2            -0.415    0.057   -7.233    0.000   -0.415   -0.415
    i7|t3             0.906    0.065   14.010    0.000    0.906    0.906
    i10|t1           -1.120    0.070  -15.938    0.000   -1.120   -1.120
    i10|t2           -0.188    0.056   -3.360    0.001   -0.188   -0.188
    i10|t3            1.129    0.071   16.005    0.000    1.129    1.129
    i4|t1            -1.516    0.086  -17.571    0.000   -1.516   -1.516
    i4|t2            -0.508    0.058   -8.716    0.000   -0.508   -0.508
    i4|t3             0.734    0.061   11.969    0.000    0.734    0.734
    i6|t1            -1.516    0.086  -17.571    0.000   -1.516   -1.516
    i6|t2            -0.502    0.058   -8.629    0.000   -0.502   -0.502
    i6|t3             0.821    0.063   13.045    0.000    0.821    0.821
    i8|t1            -1.617    0.092  -17.584    0.000   -1.617   -1.617
    i8|t2            -0.524    0.058   -8.976    0.000   -0.524   -0.524
    i8|t3             0.856    0.064   13.451    0.000    0.856    0.856
    i9|t1            -1.293    0.076  -16.966    0.000   -1.293   -1.293
    i9|t2            -0.258    0.056   -4.596    0.000   -0.258   -0.258
    i9|t3             1.016    0.067   15.084    0.000    1.016    1.016
    i11|t1           -1.282    0.076  -16.914    0.000   -1.282   -1.282
    i11|t2           -0.346    0.057   -6.092    0.000   -0.346   -0.346
    i11|t3            0.936    0.065   14.324    0.000    0.936    0.936
    i12|t1           -0.991    0.067  -14.860    0.000   -0.991   -0.991
    i12|t2            0.025    0.056    0.442    0.658    0.025    0.025
    i12|t3            1.260    0.075   16.806    0.000    1.260    1.260
    i14|t1           -1.260    0.075  -16.806    0.000   -1.260   -1.260
    i14|t2           -0.059    0.056   -1.062    0.288   -0.059   -0.059
    i14|t3            1.249    0.075   16.750    0.000    1.249    1.249

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                0.734                               0.734    0.734
   .i2                0.771                               0.771    0.771
   .i3                0.762                               0.762    0.762
   .i5                0.427                               0.427    0.427
   .i7                0.436                               0.436    0.436
   .i10               0.450                               0.450    0.450
   .i4                0.509                               0.509    0.509
   .i6                0.422                               0.422    0.422
   .i8                0.629                               0.629    0.629
   .i9                0.434                               0.434    0.434
   .i11               0.356                               0.356    0.356
   .i12               0.467                               0.467    0.467
   .i14               0.566                               0.566    0.566
    presence          1.000                               1.000    1.000
    acceptance        1.000                               1.000    1.000


Group 2 [1]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence =~                                                           
    i1                0.686    0.027   25.326    0.000    0.686    0.686
    i2                0.654    0.029   22.592    0.000    0.654    0.654
    i3                0.598    0.033   18.404    0.000    0.598    0.598
    i5                0.717    0.024   29.979    0.000    0.717    0.717
    i7                0.759    0.022   34.280    0.000    0.759    0.759
    i10               0.725    0.023   31.722    0.000    0.725    0.725
  acceptance =~                                                         
    i4                0.671    0.029   23.518    0.000    0.671    0.671
    i6                0.703    0.025   28.247    0.000    0.703    0.703
    i8                0.578    0.035   16.591    0.000    0.578    0.578
    i9                0.675    0.027   24.676    0.000    0.675    0.675
    i11               0.654    0.031   21.137    0.000    0.654    0.654
    i12               0.700    0.025   27.485    0.000    0.700    0.700
    i14               0.548    0.035   15.739    0.000    0.548    0.548

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence ~~                                                           
    accptnc (.14.)    0.932    0.011   85.796    0.000    0.932    0.932

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    i1|t1            -1.435    0.083  -17.306    0.000   -1.435   -1.435
    i1|t2            -0.557    0.059   -9.395    0.000   -0.557   -0.557
    i1|t3             0.665    0.061   10.951    0.000    0.665    0.665
    i2|t1            -1.493    0.086  -17.407    0.000   -1.493   -1.493
    i2|t2            -0.242    0.057   -4.276    0.000   -0.242   -0.242
    i2|t3             0.997    0.067   14.797    0.000    0.997    0.997
    i3|t1            -1.463    0.084  -17.362    0.000   -1.463   -1.463
    i3|t2            -0.120    0.056   -2.140    0.032   -0.120   -0.120
    i3|t3             1.177    0.073   16.205    0.000    1.177    1.177
    i5|t1            -1.591    0.091  -17.457    0.000   -1.591   -1.591
    i5|t2            -0.622    0.060  -10.349    0.000   -0.622   -0.622
    i5|t3             0.782    0.063   12.475    0.000    0.782    0.782
    i7|t1            -1.591    0.091  -17.457    0.000   -1.591   -1.591
    i7|t2            -0.494    0.059   -8.433    0.000   -0.494   -0.494
    i7|t3             0.859    0.064   13.381    0.000    0.859    0.859
    i10|t1           -1.687    0.097  -17.366    0.000   -1.687   -1.687
    i10|t2           -0.522    0.059   -8.871    0.000   -0.522   -0.522
    i10|t3            0.782    0.063   12.475    0.000    0.782    0.782
    i4|t1            -1.540    0.088  -17.450    0.000   -1.540   -1.540
    i4|t2            -0.551    0.059   -9.307    0.000   -0.551   -0.551
    i4|t3             0.592    0.060    9.916    0.000    0.592    0.592
    i6|t1            -1.591    0.091  -17.457    0.000   -1.591   -1.591
    i6|t2            -0.368    0.057   -6.406    0.000   -0.368   -0.368
    i6|t3             0.896    0.065   13.784    0.000    0.896    0.896
    i8|t1            -1.827    0.107  -17.001    0.000   -1.827   -1.827
    i8|t2            -0.511    0.059   -8.696    0.000   -0.511   -0.511
    i8|t3             0.911    0.065   13.943    0.000    0.911    0.911
    i9|t1            -1.493    0.086  -17.407    0.000   -1.493   -1.493
    i9|t2            -0.405    0.058   -7.025    0.000   -0.405   -0.405
    i9|t3             0.941    0.066   14.258    0.000    0.941    0.941
    i11|t1           -1.591    0.091  -17.457    0.000   -1.591   -1.591
    i11|t2           -0.389    0.058   -6.760    0.000   -0.389   -0.389
    i11|t3            0.903    0.065   13.863    0.000    0.903    0.903
    i12|t1           -1.435    0.083  -17.306    0.000   -1.435   -1.435
    i12|t2           -0.166    0.056   -2.942    0.003   -0.166   -0.166
    i12|t3            1.005    0.068   14.873    0.000    1.005    1.005
    i14|t1           -1.355    0.079  -17.082    0.000   -1.355   -1.355
    i14|t2           -0.278    0.057   -4.899    0.000   -0.278   -0.278
    i14|t3            0.981    0.067   14.645    0.000    0.981    0.981

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                0.530                               0.530    0.530
   .i2                0.572                               0.572    0.572
   .i3                0.642                               0.642    0.642
   .i5                0.486                               0.486    0.486
   .i7                0.424                               0.424    0.424
   .i10               0.474                               0.474    0.474
   .i4                0.549                               0.549    0.549
   .i6                0.505                               0.505    0.505
   .i8                0.666                               0.666    0.666
   .i9                0.544                               0.544    0.544
   .i11               0.573                               0.573    0.573
   .i12               0.509                               0.509    0.509
   .i14               0.699                               0.699    0.699
    presence          1.000                               1.000    1.000
    acceptance        1.000                               1.000    1.000
Code
fitMeasures(cfa_med_non_med_cor_constrained_ordered)
                         npar                          fmin 
                      105.000                         0.150 
                        chisq                            df 
                      304.165                       129.000 
                       pvalue                  chisq.scaled 
                        0.000                       524.510 
                    df.scaled                 pvalue.scaled 
                      129.000                         0.000 
         chisq.scaling.factor                baseline.chisq 
                        0.607                     24532.153 
                  baseline.df               baseline.pvalue 
                      156.000                         0.000 
        baseline.chisq.scaled            baseline.df.scaled 
                     9549.368                       156.000 
       baseline.pvalue.scaled baseline.chisq.scaling.factor 
                        0.000                         2.595 
                          cfi                           tli 
                        0.993                         0.991 
                   cfi.scaled                    tli.scaled 
                        0.958                         0.949 
                   cfi.robust                    tli.robust 
                        0.923                         0.907 
                         nnfi                           rfi 
                        0.991                         0.985 
                          nfi                          pnfi 
                        0.988                         0.817 
                          ifi                           rni 
                        0.993                         0.993 
                  nnfi.scaled                    rfi.scaled 
                        0.949                         0.934 
                   nfi.scaled                   pnfi.scaled 
                        0.945                         0.782 
                   ifi.scaled                    rni.scaled 
                        0.958                         0.958 
                  nnfi.robust                    rni.robust 
                        0.907                         0.923 
                        rmsea                rmsea.ci.lower 
                        0.052                         0.044 
               rmsea.ci.upper                rmsea.ci.level 
                        0.059                         0.900 
                 rmsea.pvalue                rmsea.close.h0 
                        0.333                         0.050 
        rmsea.notclose.pvalue             rmsea.notclose.h0 
                        0.000                         0.080 
                 rmsea.scaled         rmsea.ci.lower.scaled 
                        0.078                         0.071 
        rmsea.ci.upper.scaled           rmsea.pvalue.scaled 
                        0.085                         0.000 
 rmsea.notclose.pvalue.scaled                  rmsea.robust 
                        0.319                         0.082 
        rmsea.ci.lower.robust         rmsea.ci.upper.robust 
                        0.074                         0.089 
          rmsea.pvalue.robust  rmsea.notclose.pvalue.robust 
                        0.000                         0.649 
                          rmr                    rmr_nomean 
                        0.038                         0.046 
                         srmr                  srmr_bentler 
                        0.046                         0.038 
          srmr_bentler_nomean                          crmr 
                        0.046                         0.041 
                  crmr_nomean                    srmr_mplus 
                        0.050                            NA 
            srmr_mplus_nomean                         cn_05 
                           NA                       520.693 
                        cn_01                           gfi 
                      563.100                         0.992 
                         agfi                          pgfi 
                        0.986                         0.547 
                          mfi                          wrmr 
                        0.917                         1.612 

9.3 Tests between MG-CFA models

9.3.1 ANOVA/Likelihood Ratio Test

Lower chi square indicates better model fit.

9.3.1.1 Numeric

Code
anova(cfa_med_non_med_fmi13_numeric,
      cfa_med_non_med_cor_constrained_numeric2) |> 
  kable(digits = 2)
Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
cfa_med_non_med_fmi13_numeric 128 28636.37 29029.94 368.51 NA NA NA NA
cfa_med_non_med_cor_constrained_numeric2 129 28639.16 29027.82 373.30 4.79 0.09 1 0.03

As the p-value is significant at the 5% level, we reject the H0 that the simpler model fits the data as well as the more complex model. Here, the more complex (unconstrained) models leads to a statistically significant improvement in model fit. We should prefer the more complex model. However, due to the sensititivity

9.3.1.2 Ordered

Code
anova(cfa_med_non_med_fmi13_ordered,
      cfa_med_non_med_cor_constrained_ordered)  |> 
  kable(digits = 2)
Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
cfa_med_non_med_fmi13_ordered 128 NA NA 298.43 NA NA NA
cfa_med_non_med_cor_constrained_ordered 129 NA NA 304.17 7.65 1 0.01

9.3.2 Differences in Fit indices

Change in CFI (Comparative Fit Index): A change (decrease) in CFI of ≤0.01 is often considered indicative of a non-significant difference. Some researchers use a more conservative cutoff of ≤0.005.

Change in RMSEA (Root Mean Square Error of Approximation): An increase in RMSEA of ≤0.015 is often considered acceptable. Some use a more conservative cutoff of ≤0.010.

Change in SRMR (Standardized Root Mean Square Residual): Similar to RMSEA, a small increase in SRMR (e.g., ≤0.01 or ≤0.02) might suggest that the more constrained model has not worsened the fit substantially.

Code
delta_fit <- function(model1, model2, measures = c("cfi", "tli", "rmsea", "srmr")) {
  
  out <- list()
  for (measure in measures) {
    out[[measure]] <- fitMeasures(model1, measure) - fitMeasures(model2, measure)
  }

  return(out)
} 

9.3.2.1 Numeric

Code
fit_deltas_numeric <- delta_fit(
  cfa_med_non_med_fmi13_numeric,
  cfa_med_non_med_cor_constrained_numeric2)

fit_deltas_numeric
$cfi
  cfi 
0.001 

$tli
  tli 
0.001 

$rmsea
rmsea 
    0 

$srmr
  srmr 
-0.002 

9.3.2.2 Ordered

Code
fit_deltas_ordered <- 
  delta_fit(
    cfa_med_non_med_fmi13_ordered,
    cfa_med_non_med_cor_constrained_ordered)

fit_deltas_ordered
$cfi
cfi 
  0 

$tli
tli 
  0 

$rmsea
 rmsea 
-0.001 

$srmr
  srmr 
-0.001 

9.3.3 Results of multigroup CFA

Code
fit_deltas_lists <- 
  list(numeric = fit_deltas_numeric,
            ordered = fit_deltas_ordered)

fit_deltas_df <-
  bind_rows(fit_deltas_lists,
            .id = "type") |> 
  mutate(across(where(is.numeric), as.numeric))
New names:
New names:
New names:
New names:
• `cfi` -> `cfi...1`
• `cfi` -> `cfi...2`
Code
fit_deltas_df  |> 
  kable(digits = 3) 
type cfi tli rmsea srmr
numeric 0.001 0.001 0.000 -0.002
ordered 0.000 0.000 -0.001 -0.001

10 Measurement invariance tests

10.1 Configural model

The configural model tests whether the same factor structure holds across groups without imposing equality constraints.

The FMI13 was used.

cfa_med_non_med_fmi13_ordered

Code
cfa_med_non_med_fmi13_ordered <- 
  cfa(model = FMI13R,
      data = fmi_items,
      estimator = "WLSMV",
      sample.cov = polychoric_rho,
      ordered = TRUE,
      std.lv = TRUE,
      parameterization = "theta",
      group = "mindfulness_experience")

summary(cfa_med_non_med_fmi13_ordered, 
        fit.measures= TRUE, 
        standardized = TRUE)
lavaan 0.6-19 ended normally after 40 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of model parameters                       106

  Number of observations per group:                   
    0                                              510
    1                                              502

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               298.429     517.093
  Degrees of freedom                               128         128
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.605
  Shift parameter                                           23.499
    simple second-order correction                                
  Test statistic for each group:
    0                                          371.502     371.502
    1                                          145.590     145.590

Model Test Baseline Model:

  Test statistic                             24532.153    9549.368
  Degrees of freedom                               156         156
  P-value                                        0.000       0.000
  Scaling correction factor                                  2.595

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.993       0.959
  Tucker-Lewis Index (TLI)                       0.991       0.950
                                                                  
  Robust Comparative Fit Index (CFI)                         0.924
  Robust Tucker-Lewis Index (TLI)                            0.908

Root Mean Square Error of Approximation:

  RMSEA                                          0.051       0.078
  90 Percent confidence interval - lower         0.044       0.071
  90 Percent confidence interval - upper         0.059       0.085
  P-value H_0: RMSEA <= 0.050                    0.374       0.000
  P-value H_0: RMSEA >= 0.080                    0.000       0.292
                                                                  
  Robust RMSEA                                               0.081
  90 Percent confidence interval - lower                     0.074
  90 Percent confidence interval - upper                     0.089
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.636

Standardized Root Mean Square Residual:

  SRMR                                           0.045       0.045

Parameter Estimates:

  Parameterization                               Theta
  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured


Group 1 [0]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence =~                                                           
    i1                0.610    0.056   10.812    0.000    0.610    0.521
    i2                0.553    0.054   10.306    0.000    0.553    0.484
    i3                0.567    0.055   10.295    0.000    0.567    0.493
    i5                1.191    0.085   13.967    0.000    1.191    0.766
    i7                1.169    0.084   13.976    0.000    1.169    0.760
    i10               1.136    0.078   14.568    0.000    1.136    0.751
  acceptance =~                                                         
    i4                0.990    0.070   14.097    0.000    0.990    0.704
    i6                1.181    0.076   15.640    0.000    1.181    0.763
    i8                0.773    0.060   12.857    0.000    0.773    0.611
    i9                1.154    0.074   15.632    0.000    1.154    0.756
    i11               1.360    0.086   15.809    0.000    1.360    0.806
    i12               1.077    0.070   15.393    0.000    1.077    0.733
    i14               0.882    0.064   13.880    0.000    0.882    0.661

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence ~~                                                           
    acceptance        0.905    0.015   59.302    0.000    0.905    0.905

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    i1|t1            -1.776    0.100  -17.776    0.000   -1.776   -1.516
    i1|t2            -0.801    0.072  -11.151    0.000   -0.801   -0.684
    i1|t3             0.815    0.071   11.555    0.000    0.815    0.696
    i2|t1            -0.986    0.073  -13.526    0.000   -0.986   -0.863
    i2|t2             0.243    0.064    3.801    0.000    0.243    0.213
    i2|t3             1.356    0.082   16.639    0.000    1.356    1.187
    i3|t1            -0.874    0.071  -12.376    0.000   -0.874   -0.760
    i3|t2             0.332    0.065    5.116    0.000    0.332    0.289
    i3|t3             1.612    0.094   17.211    0.000    1.612    1.402
    i5|t1            -2.122    0.131  -16.211    0.000   -2.122   -1.364
    i5|t2            -0.695    0.092   -7.558    0.000   -0.695   -0.447
    i5|t3             1.287    0.095   13.485    0.000    1.287    0.828
    i7|t1            -1.904    0.119  -16.068    0.000   -1.904   -1.238
    i7|t2            -0.638    0.090   -7.108    0.000   -0.638   -0.415
    i7|t3             1.394    0.098   14.255    0.000    1.394    0.906
    i10|t1           -1.695    0.101  -16.809    0.000   -1.695   -1.120
    i10|t2           -0.284    0.085   -3.360    0.001   -0.284   -0.188
    i10|t3            1.709    0.108   15.754    0.000    1.709    1.129
    i4|t1            -2.134    0.123  -17.282    0.000   -2.134   -1.516
    i4|t2            -0.714    0.083   -8.564    0.000   -0.714   -0.508
    i4|t3             1.033    0.085   12.198    0.000    1.033    0.734
    i6|t1            -2.347    0.134  -17.531    0.000   -2.347   -1.516
    i6|t2            -0.777    0.090   -8.621    0.000   -0.777   -0.502
    i6|t3             1.270    0.093   13.716    0.000    1.270    0.821
    i8|t1            -2.043    0.114  -17.851    0.000   -2.043   -1.617
    i8|t2            -0.663    0.075   -8.849    0.000   -0.663   -0.524
    i8|t3             1.081    0.079   13.620    0.000    1.081    0.856
    i9|t1            -1.974    0.113  -17.484    0.000   -1.974   -1.293
    i9|t2            -0.395    0.086   -4.572    0.000   -0.395   -0.258
    i9|t3             1.551    0.101   15.421    0.000    1.551    1.016
    i11|t1           -2.164    0.131  -16.476    0.000   -2.164   -1.282
    i11|t2           -0.584    0.097   -6.041    0.000   -0.584   -0.346
    i11|t3            1.581    0.104   15.211    0.000    1.581    0.936
    i12|t1           -1.457    0.097  -15.073    0.000   -1.457   -0.991
    i12|t2            0.036    0.082    0.442    0.658    0.036    0.025
    i12|t3            1.851    0.105   17.606    0.000    1.851    1.260
    i14|t1           -1.679    0.099  -16.930    0.000   -1.679   -1.260
    i14|t2           -0.079    0.074   -1.061    0.289   -0.079   -0.059
    i14|t3            1.665    0.099   16.738    0.000    1.665    1.249

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                1.000                               1.000    0.729
   .i2                1.000                               1.000    0.766
   .i3                1.000                               1.000    0.757
   .i5                1.000                               1.000    0.413
   .i7                1.000                               1.000    0.423
   .i10               1.000                               1.000    0.437
   .i4                1.000                               1.000    0.505
   .i6                1.000                               1.000    0.417
   .i8                1.000                               1.000    0.626
   .i9                1.000                               1.000    0.429
   .i11               1.000                               1.000    0.351
   .i12               1.000                               1.000    0.463
   .i14               1.000                               1.000    0.563
    presence          1.000                               1.000    1.000
    acceptance        1.000                               1.000    1.000

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    i1                0.854                               0.854    1.000
    i2                0.875                               0.875    1.000
    i3                0.870                               0.870    1.000
    i5                0.643                               0.643    1.000
    i7                0.650                               0.650    1.000
    i10               0.661                               0.661    1.000
    i4                0.711                               0.711    1.000
    i6                0.646                               0.646    1.000
    i8                0.791                               0.791    1.000
    i9                0.655                               0.655    1.000
    i11               0.592                               0.592    1.000
    i12               0.680                               0.680    1.000
    i14               0.750                               0.750    1.000


Group 2 [1]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence =~                                                           
    i1                0.928    0.068   13.674    0.000    0.928    0.680
    i2                0.853    0.065   13.116    0.000    0.853    0.649
    i3                0.737    0.062   11.951    0.000    0.737    0.593
    i5                1.011    0.068   14.772    0.000    1.011    0.711
    i7                1.142    0.077   14.890    0.000    1.142    0.752
    i10               1.037    0.068   15.284    0.000    1.037    0.720
  acceptance =~                                                         
    i4                0.891    0.068   13.043    0.000    0.891    0.665
    i6                0.971    0.067   14.457    0.000    0.971    0.697
    i8                0.700    0.063   11.131    0.000    0.700    0.573
    i9                0.902    0.067   13.544    0.000    0.902    0.670
    i11               0.851    0.069   12.265    0.000    0.851    0.648
    i12               0.964    0.068   14.186    0.000    0.964    0.694
    i14               0.648    0.059   11.076    0.000    0.648    0.544

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence ~~                                                           
    acceptance        0.965    0.015   62.311    0.000    0.965    0.965

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    i1|t1            -1.957    0.110  -17.776    0.000   -1.957   -1.435
    i1|t2            -0.759    0.082   -9.282    0.000   -0.759   -0.557
    i1|t3             0.907    0.083   10.904    0.000    0.907    0.665
    i2|t1            -1.962    0.113  -17.401    0.000   -1.962   -1.493
    i2|t2            -0.318    0.074   -4.270    0.000   -0.318   -0.242
    i2|t3             1.310    0.091   14.463    0.000    1.310    0.997
    i3|t1            -1.818    0.105  -17.269    0.000   -1.818   -1.463
    i3|t2            -0.149    0.070   -2.137    0.033   -0.149   -0.120
    i3|t3             1.463    0.093   15.745    0.000    1.463    1.177
    i5|t1            -2.263    0.123  -18.473    0.000   -2.263   -1.591
    i5|t2            -0.885    0.086  -10.283    0.000   -0.885   -0.622
    i5|t3             1.112    0.090   12.369    0.000    1.112    0.782
    i7|t1            -2.415    0.135  -17.875    0.000   -2.415   -1.591
    i7|t2            -0.749    0.089   -8.383    0.000   -0.749   -0.494
    i7|t3             1.303    0.099   13.123    0.000    1.303    0.859
    i10|t1           -2.430    0.139  -17.465    0.000   -2.430   -1.687
    i10|t2           -0.752    0.086   -8.782    0.000   -0.752   -0.522
    i10|t3            1.126    0.089   12.650    0.000    1.126    0.782
    i4|t1            -2.063    0.120  -17.251    0.000   -2.063   -1.540
    i4|t2            -0.738    0.081   -9.117    0.000   -0.738   -0.551
    i4|t3             0.793    0.080    9.919    0.000    0.793    0.592
    i6|t1            -2.218    0.124  -17.867    0.000   -2.218   -1.591
    i6|t2            -0.512    0.080   -6.439    0.000   -0.512   -0.368
    i6|t3             1.248    0.091   13.700    0.000    1.248    0.896
    i8|t1            -2.230    0.133  -16.722    0.000   -2.230   -1.827
    i8|t2            -0.623    0.073   -8.592    0.000   -0.623   -0.511
    i8|t3             1.111    0.081   13.707    0.000    1.111    0.911
    i9|t1            -2.010    0.112  -17.997    0.000   -2.010   -1.493
    i9|t2            -0.546    0.078   -6.986    0.000   -0.546   -0.405
    i9|t3             1.267    0.091   13.975    0.000    1.267    0.941
    i11|t1           -2.090    0.124  -16.911    0.000   -2.090   -1.591
    i11|t2           -0.511    0.076   -6.691    0.000   -0.511   -0.389
    i11|t3            1.186    0.088   13.440    0.000    1.186    0.903
    i12|t1           -1.993    0.117  -16.996    0.000   -1.993   -1.435
    i12|t2           -0.230    0.078   -2.940    0.003   -0.230   -0.166
    i12|t3            1.397    0.094   14.889    0.000    1.397    1.005
    i14|t1           -1.615    0.094  -17.142    0.000   -1.615   -1.355
    i14|t2           -0.331    0.068   -4.891    0.000   -0.331   -0.278
    i14|t3            1.169    0.081   14.515    0.000    1.169    0.981

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                1.000                               1.000    0.537
   .i2                1.000                               1.000    0.579
   .i3                1.000                               1.000    0.648
   .i5                1.000                               1.000    0.494
   .i7                1.000                               1.000    0.434
   .i10               1.000                               1.000    0.482
   .i4                1.000                               1.000    0.557
   .i6                1.000                               1.000    0.515
   .i8                1.000                               1.000    0.671
   .i9                1.000                               1.000    0.552
   .i11               1.000                               1.000    0.580
   .i12               1.000                               1.000    0.518
   .i14               1.000                               1.000    0.704
    presence          1.000                               1.000    1.000
    acceptance        1.000                               1.000    1.000

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    i1                0.733                               0.733    1.000
    i2                0.761                               0.761    1.000
    i3                0.805                               0.805    1.000
    i5                0.703                               0.703    1.000
    i7                0.659                               0.659    1.000
    i10               0.694                               0.694    1.000
    i4                0.747                               0.747    1.000
    i6                0.718                               0.718    1.000
    i8                0.819                               0.819    1.000
    i9                0.743                               0.743    1.000
    i11               0.761                               0.761    1.000
    i12               0.720                               0.720    1.000
    i14               0.839                               0.839    1.000
Code
fitMeasures(cfa_med_non_med_fmi13_ordered)
                         npar                          fmin 
                      106.000                         0.147 
                        chisq                            df 
                      298.429                       128.000 
                       pvalue                  chisq.scaled 
                        0.000                       517.093 
                    df.scaled                 pvalue.scaled 
                      128.000                         0.000 
         chisq.scaling.factor                baseline.chisq 
                        0.605                     24532.153 
                  baseline.df               baseline.pvalue 
                      156.000                         0.000 
        baseline.chisq.scaled            baseline.df.scaled 
                     9549.368                       156.000 
       baseline.pvalue.scaled baseline.chisq.scaling.factor 
                        0.000                         2.595 
                          cfi                           tli 
                        0.993                         0.991 
                   cfi.scaled                    tli.scaled 
                        0.959                         0.950 
                   cfi.robust                    tli.robust 
                        0.924                         0.908 
                         nnfi                           rfi 
                        0.991                         0.985 
                          nfi                          pnfi 
                        0.988                         0.811 
                          ifi                           rni 
                        0.993                         0.993 
                  nnfi.scaled                    rfi.scaled 
                        0.950                         0.934 
                   nfi.scaled                   pnfi.scaled 
                        0.946                         0.776 
                   ifi.scaled                    rni.scaled 
                        0.959                         0.959 
                  nnfi.robust                    rni.robust 
                        0.908                         0.924 
                        rmsea                rmsea.ci.lower 
                        0.051                         0.044 
               rmsea.ci.upper                rmsea.ci.level 
                        0.059                         0.900 
                 rmsea.pvalue                rmsea.close.h0 
                        0.374                         0.050 
        rmsea.notclose.pvalue             rmsea.notclose.h0 
                        0.000                         0.080 
                 rmsea.scaled         rmsea.ci.lower.scaled 
                        0.078                         0.071 
        rmsea.ci.upper.scaled           rmsea.pvalue.scaled 
                        0.085                         0.000 
 rmsea.notclose.pvalue.scaled                  rmsea.robust 
                        0.292                         0.081 
        rmsea.ci.lower.robust         rmsea.ci.upper.robust 
                        0.074                         0.089 
          rmsea.pvalue.robust  rmsea.notclose.pvalue.robust 
                        0.000                         0.636 
                          rmr                    rmr_nomean 
                        0.038                         0.045 
                         srmr                  srmr_bentler 
                        0.045                         0.038 
          srmr_bentler_nomean                          crmr 
                        0.045                         0.040 
                  crmr_nomean                    srmr_mplus 
                        0.049                            NA 
            srmr_mplus_nomean                         cn_05 
                           NA                       526.950 
                        cn_01                           gfi 
                      570.028                         0.992 
                         agfi                          pgfi 
                        0.986                         0.543 
                          mfi                          wrmr 
                        0.919                         1.597 

10.2 Weak invarance (metric invariance)

Metric invariance constrains factor loadings to be equal across groups. This tests whether the construct has the same meaning across groups.

Code
cfa_med_non_med_cor_constrained_ordered_loadings <- 
  cfa(model = FMI13R,
      data = fmi_items,
      estimator = "WLSMV",
      sample.cov = polychoric_rho,
      ordered = TRUE,
      group = "mindfulness_experience",
      std.lv = TRUE,
      parameterization = "theta",
      group.equal = c("loadings")
      )

summary(cfa_med_non_med_cor_constrained_ordered_loadings, 
        fit.measures= TRUE, 
        standardized = TRUE)
lavaan 0.6-19 ended normally after 39 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of model parameters                       108
  Number of equality constraints                    13

  Number of observations per group:                   
    0                                              510
    1                                              502

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               399.339     504.609
  Degrees of freedom                               139         139
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.858
  Shift parameter                                           39.371
    simple second-order correction                                
  Test statistic for each group:
    0                                          327.202     327.202
    1                                          177.407     177.407

Model Test Baseline Model:

  Test statistic                             24532.153    9549.368
  Degrees of freedom                               156         156
  P-value                                        0.000       0.000
  Scaling correction factor                                  2.595

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.989       0.961
  Tucker-Lewis Index (TLI)                       0.988       0.956
                                                                  
  Robust Comparative Fit Index (CFI)                         0.917
  Robust Tucker-Lewis Index (TLI)                            0.907

Root Mean Square Error of Approximation:

  RMSEA                                          0.061       0.072
  90 Percent confidence interval - lower         0.054       0.065
  90 Percent confidence interval - upper         0.068       0.079
  P-value H_0: RMSEA <= 0.050                    0.005       0.000
  P-value H_0: RMSEA >= 0.080                    0.000       0.029
                                                                  
  Robust RMSEA                                               0.082
  90 Percent confidence interval - lower                     0.075
  90 Percent confidence interval - upper                     0.089
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.683

Standardized Root Mean Square Residual:

  SRMR                                           0.054       0.054

Parameter Estimates:

  Parameterization                               Theta
  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured


Group 1 [0]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence =~                                                           
    i1      (.p1.)    0.695    0.047   14.786    0.000    0.695    0.570
    i2      (.p2.)    0.634    0.044   14.544    0.000    0.634    0.536
    i3      (.p3.)    0.599    0.043   14.003    0.000    0.599    0.514
    i5      (.p4.)    1.036    0.059   17.492    0.000    1.036    0.719
    i7      (.p5.)    1.079    0.062   17.417    0.000    1.079    0.733
    i10     (.p6.)    1.019    0.057   17.928    0.000    1.019    0.714
  acceptance =~                                                         
    i4      (.p7.)    1.045    0.062   16.843    0.000    1.045    0.722
    i6      (.p8.)    1.195    0.065   18.250    0.000    1.195    0.767
    i8      (.p9.)    0.815    0.053   15.303    0.000    0.815    0.632
    i9      (.10.)    1.140    0.063   18.088    0.000    1.140    0.752
    i11     (.11.)    1.203    0.068   17.682    0.000    1.203    0.769
    i12     (.12.)    1.139    0.063   18.048    0.000    1.139    0.752
    i14     (.13.)    0.845    0.053   16.097    0.000    0.845    0.646

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence ~~                                                           
    acceptance        0.919    0.016   57.965    0.000    0.919    0.919

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    i1|t1            -1.846    0.103  -17.974    0.000   -1.846   -1.516
    i1|t2            -0.833    0.074  -11.254    0.000   -0.833   -0.684
    i1|t3             0.848    0.073   11.576    0.000    0.848    0.696
    i2|t1            -1.022    0.075  -13.707    0.000   -1.022   -0.863
    i2|t2             0.252    0.066    3.802    0.000    0.252    0.213
    i2|t3             1.406    0.085   16.625    0.000    1.406    1.187
    i3|t1            -0.886    0.071  -12.471    0.000   -0.886   -0.760
    i3|t2             0.337    0.066    5.115    0.000    0.337    0.289
    i3|t3             1.635    0.094   17.482    0.000    1.635    1.402
    i5|t1            -1.964    0.111  -17.653    0.000   -1.964   -1.364
    i5|t2            -0.643    0.083   -7.735    0.000   -0.643   -0.447
    i5|t3             1.192    0.087   13.658    0.000    1.192    0.828
    i7|t1            -1.821    0.106  -17.164    0.000   -1.821   -1.238
    i7|t2            -0.610    0.084   -7.223    0.000   -0.610   -0.415
    i7|t3             1.333    0.092   14.468    0.000    1.333    0.906
    i10|t1           -1.599    0.094  -16.932    0.000   -1.599   -1.120
    i10|t2           -0.268    0.080   -3.367    0.001   -0.268   -0.188
    i10|t3            1.612    0.099   16.295    0.000    1.612    1.129
    i4|t1            -2.193    0.125  -17.555    0.000   -2.193   -1.516
    i4|t2            -0.734    0.085   -8.659    0.000   -0.734   -0.508
    i4|t3             1.062    0.088   12.123    0.000    1.062    0.734
    i6|t1            -2.363    0.131  -18.053    0.000   -2.363   -1.516
    i6|t2            -0.782    0.090   -8.665    0.000   -0.782   -0.502
    i6|t3             1.279    0.095   13.423    0.000    1.279    0.821
    i8|t1            -2.086    0.117  -17.893    0.000   -2.086   -1.617
    i8|t2            -0.677    0.076   -8.885    0.000   -0.677   -0.524
    i8|t3             1.104    0.081   13.656    0.000    1.104    0.856
    i9|t1            -1.960    0.111  -17.587    0.000   -1.960   -1.293
    i9|t2            -0.392    0.085   -4.593    0.000   -0.392   -0.258
    i9|t3             1.540    0.100   15.449    0.000    1.540    1.016
    i11|t1           -2.005    0.117  -17.129    0.000   -2.005   -1.282
    i11|t2           -0.541    0.089   -6.078    0.000   -0.541   -0.346
    i11|t3            1.465    0.100   14.678    0.000    1.465    0.936
    i12|t1           -1.502    0.099  -15.130    0.000   -1.502   -0.991
    i12|t2            0.037    0.084    0.442    0.658    0.037    0.025
    i12|t3            1.909    0.110   17.336    0.000    1.909    1.260
    i14|t1           -1.649    0.096  -17.193    0.000   -1.649   -1.260
    i14|t2           -0.077    0.073   -1.062    0.288   -0.077   -0.059
    i14|t3            1.635    0.097   16.878    0.000    1.635    1.249

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                1.000                               1.000    0.675
   .i2                1.000                               1.000    0.713
   .i3                1.000                               1.000    0.736
   .i5                1.000                               1.000    0.483
   .i7                1.000                               1.000    0.462
   .i10               1.000                               1.000    0.490
   .i4                1.000                               1.000    0.478
   .i6                1.000                               1.000    0.412
   .i8                1.000                               1.000    0.601
   .i9                1.000                               1.000    0.435
   .i11               1.000                               1.000    0.409
   .i12               1.000                               1.000    0.435
   .i14               1.000                               1.000    0.583
    presence          1.000                               1.000    1.000
    acceptance        1.000                               1.000    1.000

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    i1                0.821                               0.821    1.000
    i2                0.844                               0.844    1.000
    i3                0.858                               0.858    1.000
    i5                0.695                               0.695    1.000
    i7                0.680                               0.680    1.000
    i10               0.700                               0.700    1.000
    i4                0.691                               0.691    1.000
    i6                0.642                               0.642    1.000
    i8                0.775                               0.775    1.000
    i9                0.660                               0.660    1.000
    i11               0.639                               0.639    1.000
    i12               0.660                               0.660    1.000
    i14               0.764                               0.764    1.000


Group 2 [1]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence =~                                                           
    i1      (.p1.)    0.695    0.047   14.786    0.000    0.809    0.629
    i2      (.p2.)    0.634    0.044   14.544    0.000    0.739    0.594
    i3      (.p3.)    0.599    0.043   14.003    0.000    0.698    0.572
    i5      (.p4.)    1.036    0.059   17.492    0.000    1.207    0.770
    i7      (.p5.)    1.079    0.062   17.417    0.000    1.257    0.783
    i10     (.p6.)    1.019    0.057   17.928    0.000    1.188    0.765
  acceptance =~                                                         
    i4      (.p7.)    1.045    0.062   16.843    0.000    0.840    0.643
    i6      (.p8.)    1.195    0.065   18.250    0.000    0.961    0.693
    i8      (.p9.)    0.815    0.053   15.303    0.000    0.656    0.548
    i9      (.10.)    1.140    0.063   18.088    0.000    0.916    0.676
    i11     (.11.)    1.203    0.068   17.682    0.000    0.968    0.695
    i12     (.12.)    1.139    0.063   18.048    0.000    0.916    0.676
    i14     (.13.)    0.845    0.053   16.097    0.000    0.680    0.562

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  presence ~~                                                           
    acceptance        0.892    0.100    8.900    0.000    0.952    0.952

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    i1|t1            -1.845    0.105  -17.574    0.000   -1.845   -1.435
    i1|t2            -0.716    0.077   -9.336    0.000   -0.716   -0.557
    i1|t3             0.856    0.077   11.081    0.000    0.856    0.665
    i2|t1            -1.857    0.106  -17.516    0.000   -1.857   -1.493
    i2|t2            -0.301    0.071   -4.262    0.000   -0.301   -0.242
    i2|t3             1.240    0.083   15.024    0.000    1.240    0.997
    i3|t1            -1.784    0.101  -17.580    0.000   -1.784   -1.463
    i3|t2            -0.146    0.069   -2.137    0.033   -0.146   -0.120
    i3|t3             1.436    0.089   16.203    0.000    1.436    1.177
    i5|t1            -2.494    0.144  -17.268    0.000   -2.494   -1.591
    i5|t2            -0.975    0.097  -10.093    0.000   -0.975   -0.622
    i5|t3             1.225    0.099   12.321    0.000    1.225    0.782
    i7|t1            -2.556    0.150  -17.035    0.000   -2.556   -1.591
    i7|t2            -0.793    0.096   -8.281    0.000   -0.793   -0.494
    i7|t3             1.379    0.104   13.239    0.000    1.379    0.859
    i10|t1           -2.619    0.153  -17.073    0.000   -2.619   -1.687
    i10|t2           -0.811    0.093   -8.697    0.000   -0.811   -0.522
    i10|t3            1.214    0.096   12.630    0.000    1.214    0.782
    i4|t1            -2.012    0.113  -17.752    0.000   -2.012   -1.540
    i4|t2            -0.720    0.078   -9.265    0.000   -0.720   -0.551
    i4|t3             0.773    0.077   10.007    0.000    0.773    0.592
    i6|t1            -2.207    0.124  -17.850    0.000   -2.207   -1.591
    i6|t2            -0.510    0.080   -6.412    0.000   -0.510   -0.368
    i6|t3             1.242    0.089   13.974    0.000    1.242    0.896
    i8|t1            -2.185    0.126  -17.321    0.000   -2.185   -1.827
    i8|t2            -0.611    0.071   -8.658    0.000   -0.611   -0.511
    i8|t3             1.089    0.077   14.126    0.000    1.089    0.911
    i9|t1            -2.025    0.113  -17.919    0.000   -2.025   -1.493
    i9|t2            -0.550    0.078   -7.004    0.000   -0.550   -0.405
    i9|t3             1.277    0.089   14.377    0.000    1.277    0.941
    i11|t1           -2.214    0.129  -17.189    0.000   -2.214   -1.591
    i11|t2           -0.541    0.081   -6.703    0.000   -0.541   -0.389
    i11|t3            1.256    0.091   13.838    0.000    1.256    0.903
    i12|t1           -1.946    0.112  -17.420    0.000   -1.946   -1.435
    i12|t2           -0.224    0.076   -2.941    0.003   -0.224   -0.166
    i12|t3            1.363    0.090   15.219    0.000    1.363    1.005
    i14|t1           -1.639    0.095  -17.244    0.000   -1.639   -1.355
    i14|t2           -0.336    0.069   -4.894    0.000   -0.336   -0.278
    i14|t3            1.186    0.080   14.791    0.000    1.186    0.981

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .i1                1.000                               1.000    0.604
   .i2                1.000                               1.000    0.647
   .i3                1.000                               1.000    0.672
   .i5                1.000                               1.000    0.407
   .i7                1.000                               1.000    0.388
   .i10               1.000                               1.000    0.415
   .i4                1.000                               1.000    0.586
   .i6                1.000                               1.000    0.520
   .i8                1.000                               1.000    0.699
   .i9                1.000                               1.000    0.543
   .i11               1.000                               1.000    0.516
   .i12               1.000                               1.000    0.544
   .i14               1.000                               1.000    0.684
    presence          1.358    0.179    7.593    0.000    1.000    1.000
    acceptance        0.647    0.079    8.231    0.000    1.000    1.000

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    i1                0.777                               0.777    1.000
    i2                0.804                               0.804    1.000
    i3                0.820                               0.820    1.000
    i5                0.638                               0.638    1.000
    i7                0.623                               0.623    1.000
    i10               0.644                               0.644    1.000
    i4                0.766                               0.766    1.000
    i6                0.721                               0.721    1.000
    i8                0.836                               0.836    1.000
    i9                0.737                               0.737    1.000
    i11               0.719                               0.719    1.000
    i12               0.737                               0.737    1.000
    i14               0.827                               0.827    1.000
Code
fitMeasures(cfa_med_non_med_cor_constrained_ordered_loadings)
                         npar                          fmin 
                       95.000                         0.197 
                        chisq                            df 
                      399.339                       139.000 
                       pvalue                  chisq.scaled 
                        0.000                       504.609 
                    df.scaled                 pvalue.scaled 
                      139.000                         0.000 
         chisq.scaling.factor                baseline.chisq 
                        0.858                     24532.153 
                  baseline.df               baseline.pvalue 
                      156.000                         0.000 
        baseline.chisq.scaled            baseline.df.scaled 
                     9549.368                       156.000 
       baseline.pvalue.scaled baseline.chisq.scaling.factor 
                        0.000                         2.595 
                          cfi                           tli 
                        0.989                         0.988 
                   cfi.scaled                    tli.scaled 
                        0.961                         0.956 
                   cfi.robust                    tli.robust 
                        0.917                         0.907 
                         nnfi                           rfi 
                        0.988                         0.982 
                          nfi                          pnfi 
                        0.984                         0.877 
                          ifi                           rni 
                        0.989                         0.989 
                  nnfi.scaled                    rfi.scaled 
                        0.956                         0.941 
                   nfi.scaled                   pnfi.scaled 
                        0.947                         0.844 
                   ifi.scaled                    rni.scaled 
                        0.961                         0.961 
                  nnfi.robust                    rni.robust 
                        0.907                         0.917 
                        rmsea                rmsea.ci.lower 
                        0.061                         0.054 
               rmsea.ci.upper                rmsea.ci.level 
                        0.068                         0.900 
                 rmsea.pvalue                rmsea.close.h0 
                        0.005                         0.050 
        rmsea.notclose.pvalue             rmsea.notclose.h0 
                        0.000                         0.080 
                 rmsea.scaled         rmsea.ci.lower.scaled 
                        0.072                         0.065 
        rmsea.ci.upper.scaled           rmsea.pvalue.scaled 
                        0.079                         0.000 
 rmsea.notclose.pvalue.scaled                  rmsea.robust 
                        0.029                         0.082 
        rmsea.ci.lower.robust         rmsea.ci.upper.robust 
                        0.075                         0.089 
          rmsea.pvalue.robust  rmsea.notclose.pvalue.robust 
                        0.000                         0.683 
                          rmr                    rmr_nomean 
                        0.045                         0.054 
                         srmr                  srmr_bentler 
                        0.054                         0.045 
          srmr_bentler_nomean                          crmr 
                        0.054                         0.048 
                  crmr_nomean                    srmr_mplus 
                        0.059                            NA 
            srmr_mplus_nomean                         cn_05 
                           NA                       424.674 
                        cn_01                           gfi 
                      458.026                         0.990 
                         agfi                          pgfi 
                        0.983                         0.588 
                          mfi                          wrmr 
                        0.879                         1.847 

10.3 Strong invariance (scalar invariance)

Scalar invariance adds constraints on item thresholds (for categorical data) across groups, testing whether group comparisons of latent means are meaningful.

Code
cfa_med_non_med_cor_constrained_ordered_loadings_thresholds <- 
  cfa(model = FMI13R,
      data = fmi_items,
      estimator = "WLSMV",
      sample.cov = polychoric_rho,
      ordered = TRUE,
      group = "mindfulness_experience",
      std.lv = TRUE,
      parameterization = "theta",
      group.equal = c("loadings", "thresholds")
      )

summary(cfa_med_non_med_cor_constrained_ordered_loadings_thresholds, 
        fit.measures= TRUE, 
        standardized = FALSE)
lavaan 0.6-19 ended normally after 61 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of model parameters                       123
  Number of equality constraints                    52

  Number of observations per group:                   
    0                                              510
    1                                              502

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               470.741     667.593
  Degrees of freedom                               163         163
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.744
  Shift parameter                                           34.662
    simple second-order correction                                
  Test statistic for each group:
    0                                          430.085     430.085
    1                                          237.509     237.509

Model Test Baseline Model:

  Test statistic                             24532.153    9549.368
  Degrees of freedom                               156         156
  P-value                                        0.000       0.000
  Scaling correction factor                                  2.595

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.987       0.946
  Tucker-Lewis Index (TLI)                       0.988       0.949
                                                                  
  Robust Comparative Fit Index (CFI)                            NA
  Robust Tucker-Lewis Index (TLI)                               NA

Root Mean Square Error of Approximation:

  RMSEA                                          0.061       0.078
  90 Percent confidence interval - lower         0.055       0.072
  90 Percent confidence interval - upper         0.068       0.085
  P-value H_0: RMSEA <= 0.050                    0.002       0.000
  P-value H_0: RMSEA >= 0.080                    0.000       0.332
                                                                  
  Robust RMSEA                                                  NA
  90 Percent confidence interval - lower                        NA
  90 Percent confidence interval - upper                        NA
  P-value H_0: Robust RMSEA <= 0.050                            NA
  P-value H_0: Robust RMSEA >= 0.080                            NA

Standardized Root Mean Square Residual:

  SRMR                                           0.047       0.047

Parameter Estimates:

  Parameterization                               Theta
  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured


Group 1 [0]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)
  presence =~                                         
    i1      (.p1.)    0.667    0.053   12.577    0.000
    i2      (.p2.)    0.571    0.046   12.353    0.000
    i3      (.p3.)    0.572    0.047   12.101    0.000
    i5      (.p4.)    1.149    0.076   15.151    0.000
    i7      (.p5.)    1.135    0.075   15.224    0.000
    i10     (.p6.)    1.108    0.070   15.767    0.000
  acceptance =~                                       
    i4      (.p7.)    1.017    0.068   14.961    0.000
    i6      (.p8.)    1.189    0.072   16.509    0.000
    i8      (.p9.)    0.774    0.055   14.090    0.000
    i9      (.10.)    1.147    0.069   16.567    0.000
    i11     (.11.)    1.316    0.078   16.900    0.000
    i12     (.12.)    1.082    0.066   16.436    0.000
    i14     (.13.)    0.884    0.059   14.864    0.000

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)
  presence ~~                                         
    acceptance        0.906    0.015   59.119    0.000

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)
    i1|t1   (.15.)   -1.509    0.097  -15.636    0.000
    i1|t2   (.16.)   -0.553    0.059   -9.403    0.000
    i1|t3   (.17.)    0.897    0.065   13.804    0.000
    i2|t1   (.18.)   -1.064    0.070  -15.096    0.000
    i2|t2   (.19.)    0.085    0.047    1.818    0.069
    i2|t3   (.20.)    1.193    0.075   15.905    0.000
    i3|t1   (.21.)   -1.023    0.067  -15.374    0.000
    i3|t2   (.22.)    0.189    0.048    3.949    0.000
    i3|t3   (.23.)    1.446    0.087   16.616    0.000
    i5|t1   (.24.)   -2.116    0.123  -17.174    0.000
    i5|t2   (.25.)   -0.645    0.080   -8.073    0.000
    i5|t3   (.26.)    1.457    0.092   15.845    0.000
    i7|t1   (.27.)   -1.932    0.113  -17.033    0.000
    i7|t2   (.28.)   -0.492    0.077   -6.432    0.000
    i7|t3   (.29.)    1.542    0.094   16.441    0.000
    i10|t1  (.30.)   -1.846    0.098  -18.746    0.000
    i10|t2  (.31.)   -0.339    0.074   -4.581    0.000
    i10|t3  (.32.)    1.638    0.099   16.623    0.000
    i4|t1   (.33.)   -2.053    0.121  -16.975    0.000
    i4|t2   (.34.)   -0.664    0.072   -9.206    0.000
    i4|t3   (.35.)    0.990    0.079   12.557    0.000
    i6|t1   (.36.)   -2.287    0.129  -17.795    0.000
    i6|t2   (.37.)   -0.573    0.079   -7.289    0.000
    i6|t3   (.38.)    1.389    0.087   15.928    0.000
    i8|t1   (.39.)   -2.044    0.112  -18.300    0.000
    i8|t2   (.40.)   -0.573    0.063   -9.147    0.000
    i8|t3   (.41.)    1.131    0.073   15.538    0.000
    i9|t1   (.42.)   -2.005    0.110  -18.276    0.000
    i9|t2   (.43.)   -0.418    0.074   -5.617    0.000
    i9|t3   (.44.)    1.547    0.094   16.434    0.000
    i11|t1  (.45.)   -2.289    0.128  -17.920    0.000
    i11|t2  (.46.)   -0.533    0.085   -6.299    0.000
    i11|t3  (.47.)    1.637    0.097   16.899    0.000
    i12|t1  (.48.)   -1.604    0.094  -17.000    0.000
    i12|t2  (.49.)   -0.024    0.068   -0.354    0.723
    i12|t3  (.50.)    1.648    0.096   17.117    0.000
    i14|t1  (.51.)   -1.730    0.099  -17.503    0.000
    i14|t2  (.52.)   -0.168    0.063   -2.661    0.008
    i14|t3  (.53.)    1.581    0.094   16.857    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .i1                1.000                           
   .i2                1.000                           
   .i3                1.000                           
   .i5                1.000                           
   .i7                1.000                           
   .i10               1.000                           
   .i4                1.000                           
   .i6                1.000                           
   .i8                1.000                           
   .i9                1.000                           
   .i11               1.000                           
   .i12               1.000                           
   .i14               1.000                           
    presence          1.000                           
    acceptance        1.000                           

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)
    i1                0.832                           
    i2                0.868                           
    i3                0.868                           
    i5                0.656                           
    i7                0.661                           
    i10               0.670                           
    i4                0.701                           
    i6                0.644                           
    i8                0.791                           
    i9                0.657                           
    i11               0.605                           
    i12               0.679                           
    i14               0.749                           


Group 2 [1]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)
  presence =~                                         
    i1      (.p1.)    0.667    0.053   12.577    0.000
    i2      (.p2.)    0.571    0.046   12.353    0.000
    i3      (.p3.)    0.572    0.047   12.101    0.000
    i5      (.p4.)    1.149    0.076   15.151    0.000
    i7      (.p5.)    1.135    0.075   15.224    0.000
    i10     (.p6.)    1.108    0.070   15.767    0.000
  acceptance =~                                       
    i4      (.p7.)    1.017    0.068   14.961    0.000
    i6      (.p8.)    1.189    0.072   16.509    0.000
    i8      (.p9.)    0.774    0.055   14.090    0.000
    i9      (.10.)    1.147    0.069   16.567    0.000
    i11     (.11.)    1.316    0.078   16.900    0.000
    i12     (.12.)    1.082    0.066   16.436    0.000
    i14     (.13.)    0.884    0.059   14.864    0.000

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)
  presence ~~                                         
    acceptance        0.853    0.100    8.529    0.000

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
    presence          0.356    0.073    4.844    0.000
    acceptance        0.136    0.065    2.097    0.036

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)
    i1|t1   (.15.)   -1.509    0.097  -15.636    0.000
    i1|t2   (.16.)   -0.553    0.059   -9.403    0.000
    i1|t3   (.17.)    0.897    0.065   13.804    0.000
    i2|t1   (.18.)   -1.064    0.070  -15.096    0.000
    i2|t2   (.19.)    0.085    0.047    1.818    0.069
    i2|t3   (.20.)    1.193    0.075   15.905    0.000
    i3|t1   (.21.)   -1.023    0.067  -15.374    0.000
    i3|t2   (.22.)    0.189    0.048    3.949    0.000
    i3|t3   (.23.)    1.446    0.087   16.616    0.000
    i5|t1   (.24.)   -2.116    0.123  -17.174    0.000
    i5|t2   (.25.)   -0.645    0.080   -8.073    0.000
    i5|t3   (.26.)    1.457    0.092   15.845    0.000
    i7|t1   (.27.)   -1.932    0.113  -17.033    0.000
    i7|t2   (.28.)   -0.492    0.077   -6.432    0.000
    i7|t3   (.29.)    1.542    0.094   16.441    0.000
    i10|t1  (.30.)   -1.846    0.098  -18.746    0.000
    i10|t2  (.31.)   -0.339    0.074   -4.581    0.000
    i10|t3  (.32.)    1.638    0.099   16.623    0.000
    i4|t1   (.33.)   -2.053    0.121  -16.975    0.000
    i4|t2   (.34.)   -0.664    0.072   -9.206    0.000
    i4|t3   (.35.)    0.990    0.079   12.557    0.000
    i6|t1   (.36.)   -2.287    0.129  -17.795    0.000
    i6|t2   (.37.)   -0.573    0.079   -7.289    0.000
    i6|t3   (.38.)    1.389    0.087   15.928    0.000
    i8|t1   (.39.)   -2.044    0.112  -18.300    0.000
    i8|t2   (.40.)   -0.573    0.063   -9.147    0.000
    i8|t3   (.41.)    1.131    0.073   15.538    0.000
    i9|t1   (.42.)   -2.005    0.110  -18.276    0.000
    i9|t2   (.43.)   -0.418    0.074   -5.617    0.000
    i9|t3   (.44.)    1.547    0.094   16.434    0.000
    i11|t1  (.45.)   -2.289    0.128  -17.920    0.000
    i11|t2  (.46.)   -0.533    0.085   -6.299    0.000
    i11|t3  (.47.)    1.637    0.097   16.899    0.000
    i12|t1  (.48.)   -1.604    0.094  -17.000    0.000
    i12|t2  (.49.)   -0.024    0.068   -0.354    0.723
    i12|t3  (.50.)    1.648    0.096   17.117    0.000
    i14|t1  (.51.)   -1.730    0.099  -17.503    0.000
    i14|t2  (.52.)   -0.168    0.063   -2.661    0.008
    i14|t3  (.53.)    1.581    0.094   16.857    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .i1                0.663    0.094    7.063    0.000
   .i2                0.472    0.070    6.727    0.000
   .i3                0.605    0.088    6.849    0.000
   .i5                1.265    0.166    7.639    0.000
   .i7                0.990    0.130    7.617    0.000
   .i10               1.092    0.142    7.670    0.000
   .i4                1.058    0.150    7.046    0.000
   .i6                1.168    0.142    8.223    0.000
   .i8                0.931    0.135    6.902    0.000
   .i9                1.194    0.150    7.959    0.000
   .i11               1.653    0.231    7.169    0.000
   .i12               0.943    0.121    7.788    0.000
   .i14               1.400    0.199    7.032    0.000
    presence          1.037    0.137    7.584    0.000
    acceptance        0.753    0.094    8.046    0.000

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)
    i1                0.943                           
    i2                1.111                           
    i3                1.029                           
    i5                0.616                           
    i7                0.656                           
    i10               0.650                           
    i4                0.738                           
    i6                0.669                           
    i8                0.850                           
    i9                0.677                           
    i11               0.581                           
    i12               0.740                           
    i14               0.709                           
Code
fitMeasures(cfa_med_non_med_cor_constrained_ordered_loadings_thresholds)
                         npar                          fmin 
                       71.000                         0.233 
                        chisq                            df 
                      470.741                       163.000 
                       pvalue                  chisq.scaled 
                        0.000                       667.593 
                    df.scaled                 pvalue.scaled 
                      163.000                         0.000 
         chisq.scaling.factor                baseline.chisq 
                        0.744                     24532.153 
                  baseline.df               baseline.pvalue 
                      156.000                         0.000 
        baseline.chisq.scaled            baseline.df.scaled 
                     9549.368                       156.000 
       baseline.pvalue.scaled baseline.chisq.scaling.factor 
                        0.000                         2.595 
                          cfi                           tli 
                        0.987                         0.988 
                   cfi.scaled                    tli.scaled 
                        0.946                         0.949 
                   cfi.robust                    tli.robust 
                           NA                            NA 
                         nnfi                           rfi 
                        0.988                            NA 
                          nfi                          pnfi 
                           NA                         1.025 
                          ifi                           rni 
                        0.987                         0.987 
                  nnfi.scaled                    rfi.scaled 
                        0.949                            NA 
                   nfi.scaled                   pnfi.scaled 
                           NA                         0.972 
                   ifi.scaled                    rni.scaled 
                        0.946                         0.946 
                  nnfi.robust                    rni.robust 
                           NA                            NA 
                        rmsea                rmsea.ci.lower 
                        0.061                         0.055 
               rmsea.ci.upper                rmsea.ci.level 
                        0.068                         0.900 
                 rmsea.pvalue                rmsea.close.h0 
                        0.002                         0.050 
        rmsea.notclose.pvalue             rmsea.notclose.h0 
                        0.000                         0.080 
                 rmsea.scaled         rmsea.ci.lower.scaled 
                        0.078                         0.072 
        rmsea.ci.upper.scaled           rmsea.pvalue.scaled 
                        0.085                         0.000 
 rmsea.notclose.pvalue.scaled                  rmsea.robust 
                        0.332                            NA 
        rmsea.ci.lower.robust         rmsea.ci.upper.robust 
                           NA                            NA 
          rmsea.pvalue.robust  rmsea.notclose.pvalue.robust 
                           NA                            NA 
                          rmr                    rmr_nomean 
                        0.067                         0.047 
                         srmr                  srmr_bentler 
                        0.047                         0.067 
          srmr_bentler_nomean                          crmr 
                        0.047                         0.071 
                  crmr_nomean                    srmr_mplus 
                        0.051                            NA 
            srmr_mplus_nomean                         cn_05 
                           NA                       416.790 
                        cn_01                           gfi 
                      447.101                         0.988 
                         agfi                          pgfi 
                        0.983                         0.688 
                          mfi                          wrmr 
                        0.859                         2.006 

10.4 Strict invariance

Code
cfa_med_non_med_cor_constrained_ordered_loadings_thresholds_residuals <- 
  cfa(model = FMI13R,
      data = fmi_items,
      estimator = "WLSMV",
      sample.cov = polychoric_rho,
      ordered = TRUE,
      group = "mindfulness_experience",
      std.lv = TRUE,
      parameterization = "theta",
      group.equal = c("loadings", "thresholds", "residuals")
      )

summary(cfa_med_non_med_cor_constrained_ordered_loadings_thresholds_residuals, 
        fit.measures= TRUE, 
        standardized = FALSE)
lavaan 0.6-19 ended normally after 37 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of model parameters                       110
  Number of equality constraints                    52

  Number of observations per group:                   
    0                                              510
    1                                              502

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               575.096     698.255
  Degrees of freedom                               176         176
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.885
  Shift parameter                                           48.408
    simple second-order correction                                
  Test statistic for each group:
    0                                          415.924     415.924
    1                                          282.331     282.331

Model Test Baseline Model:

  Test statistic                             24532.153    9549.368
  Degrees of freedom                               156         156
  P-value                                        0.000       0.000
  Scaling correction factor                                  2.595

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.984       0.944
  Tucker-Lewis Index (TLI)                       0.985       0.951
                                                                  
  Robust Comparative Fit Index (CFI)                            NA
  Robust Tucker-Lewis Index (TLI)                               NA

Root Mean Square Error of Approximation:

  RMSEA                                          0.067       0.077
  90 Percent confidence interval - lower         0.061       0.071
  90 Percent confidence interval - upper         0.073       0.083
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    0.000       0.183
                                                                  
  Robust RMSEA                                                  NA
  90 Percent confidence interval - lower                        NA
  90 Percent confidence interval - upper                        NA
  P-value H_0: Robust RMSEA <= 0.050                            NA
  P-value H_0: Robust RMSEA >= 0.080                            NA

Standardized Root Mean Square Residual:

  SRMR                                           0.055       0.055

Parameter Estimates:

  Parameterization                               Theta
  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured


Group 1 [0]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)
  presence =~                                         
    i1      (.p1.)    0.709    0.047   15.232    0.000
    i2      (.p2.)    0.661    0.044   14.959    0.000
    i3      (.p3.)    0.625    0.044   14.364    0.000
    i5      (.p4.)    1.053    0.059   17.784    0.000
    i7      (.p5.)    1.098    0.062   17.755    0.000
    i10     (.p6.)    1.051    0.058   18.118    0.000
  acceptance =~                                       
    i4      (.p7.)    1.029    0.060   17.016    0.000
    i6      (.p8.)    1.175    0.064   18.411    0.000
    i8      (.p9.)    0.806    0.052   15.368    0.000
    i9      (.10.)    1.127    0.062   18.193    0.000
    i11     (.11.)    1.192    0.067   17.750    0.000
    i12     (.12.)    1.130    0.062   18.138    0.000
    i14     (.13.)    0.836    0.052   16.101    0.000

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)
  presence ~~                                         
    acceptance        0.911    0.016   57.546    0.000

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)
    i1|t1   (.15.)   -1.705    0.075  -22.679    0.000
    i1|t2   (.16.)   -0.641    0.057  -11.197    0.000
    i1|t3   (.17.)    0.978    0.059   16.614    0.000
    i2|t1   (.18.)   -1.226    0.064  -19.120    0.000
    i2|t2   (.19.)    0.109    0.054    2.015    0.044
    i2|t3   (.20.)    1.454    0.066   22.030    0.000
    i3|t1   (.21.)   -1.113    0.062  -18.076    0.000
    i3|t2   (.22.)    0.219    0.052    4.163    0.000
    i3|t3   (.23.)    1.660    0.071   23.273    0.000
    i5|t1   (.24.)   -2.004    0.094  -21.433    0.000
    i5|t2   (.25.)   -0.606    0.071   -8.512    0.000
    i5|t3   (.26.)    1.389    0.077   18.057    0.000
    i7|t1   (.27.)   -1.929    0.093  -20.841    0.000
    i7|t2   (.28.)   -0.497    0.072   -6.868    0.000
    i7|t3   (.29.)    1.544    0.081   19.116    0.000
    i10|t1  (.30.)   -1.803    0.085  -21.313    0.000
    i10|t2  (.31.)   -0.330    0.070   -4.716    0.000
    i10|t3  (.32.)    1.614    0.082   19.606    0.000
    i4|t1   (.33.)   -2.026    0.092  -21.973    0.000
    i4|t2   (.34.)   -0.658    0.068   -9.736    0.000
    i4|t3   (.35.)    0.969    0.070   13.913    0.000
    i6|t1   (.36.)   -2.201    0.100  -21.927    0.000
    i6|t2   (.37.)   -0.549    0.074   -7.408    0.000
    i6|t3   (.38.)    1.332    0.077   17.206    0.000
    i8|t1   (.39.)   -2.086    0.091  -22.854    0.000
    i8|t2   (.40.)   -0.590    0.060   -9.897    0.000
    i8|t3   (.41.)    1.147    0.063   18.206    0.000
    i9|t1   (.42.)   -1.926    0.089  -21.583    0.000
    i9|t2   (.43.)   -0.404    0.071   -5.670    0.000
    i9|t3   (.44.)    1.470    0.080   18.346    0.000
    i11|t1  (.45.)   -2.037    0.100  -20.429    0.000
    i11|t2  (.46.)   -0.464    0.075   -6.206    0.000
    i11|t3  (.47.)    1.432    0.082   17.484    0.000
    i12|t1  (.48.)   -1.640    0.084  -19.482    0.000
    i12|t2  (.49.)   -0.032    0.070   -0.453    0.651
    i12|t3  (.50.)    1.667    0.082   20.286    0.000
    i14|t1  (.51.)   -1.593    0.075  -21.293    0.000
    i14|t2  (.52.)   -0.161    0.059   -2.720    0.007
    i14|t3  (.53.)    1.431    0.071   20.298    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .i1                1.000                           
   .i2                1.000                           
   .i3                1.000                           
   .i5                1.000                           
   .i7                1.000                           
   .i10               1.000                           
   .i4                1.000                           
   .i6                1.000                           
   .i8                1.000                           
   .i9                1.000                           
   .i11               1.000                           
   .i12               1.000                           
   .i14               1.000                           
    presence          1.000                           
    acceptance        1.000                           

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)
    i1                0.816                           
    i2                0.834                           
    i3                0.848                           
    i5                0.689                           
    i7                0.673                           
    i10               0.689                           
    i4                0.697                           
    i6                0.648                           
    i8                0.779                           
    i9                0.664                           
    i11               0.643                           
    i12               0.663                           
    i14               0.767                           


Group 2 [1]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)
  presence =~                                         
    i1      (.p1.)    0.709    0.047   15.232    0.000
    i2      (.p2.)    0.661    0.044   14.959    0.000
    i3      (.p3.)    0.625    0.044   14.364    0.000
    i5      (.p4.)    1.053    0.059   17.784    0.000
    i7      (.p5.)    1.098    0.062   17.755    0.000
    i10     (.p6.)    1.051    0.058   18.118    0.000
  acceptance =~                                       
    i4      (.p7.)    1.029    0.060   17.016    0.000
    i6      (.p8.)    1.175    0.064   18.411    0.000
    i8      (.p9.)    0.806    0.052   15.368    0.000
    i9      (.10.)    1.127    0.062   18.193    0.000
    i11     (.11.)    1.192    0.067   17.750    0.000
    i12     (.12.)    1.130    0.062   18.138    0.000
    i14     (.13.)    0.836    0.052   16.101    0.000

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)
  presence ~~                                         
    acceptance        0.870    0.096    9.053    0.000

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
    presence          0.378    0.076    4.960    0.000
    acceptance        0.121    0.063    1.916    0.055

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)
    i1|t1   (.15.)   -1.705    0.075  -22.679    0.000
    i1|t2   (.16.)   -0.641    0.057  -11.197    0.000
    i1|t3   (.17.)    0.978    0.059   16.614    0.000
    i2|t1   (.18.)   -1.226    0.064  -19.120    0.000
    i2|t2   (.19.)    0.109    0.054    2.015    0.044
    i2|t3   (.20.)    1.454    0.066   22.030    0.000
    i3|t1   (.21.)   -1.113    0.062  -18.076    0.000
    i3|t2   (.22.)    0.219    0.052    4.163    0.000
    i3|t3   (.23.)    1.660    0.071   23.273    0.000
    i5|t1   (.24.)   -2.004    0.094  -21.433    0.000
    i5|t2   (.25.)   -0.606    0.071   -8.512    0.000
    i5|t3   (.26.)    1.389    0.077   18.057    0.000
    i7|t1   (.27.)   -1.929    0.093  -20.841    0.000
    i7|t2   (.28.)   -0.497    0.072   -6.868    0.000
    i7|t3   (.29.)    1.544    0.081   19.116    0.000
    i10|t1  (.30.)   -1.803    0.085  -21.313    0.000
    i10|t2  (.31.)   -0.330    0.070   -4.716    0.000
    i10|t3  (.32.)    1.614    0.082   19.606    0.000
    i4|t1   (.33.)   -2.026    0.092  -21.973    0.000
    i4|t2   (.34.)   -0.658    0.068   -9.736    0.000
    i4|t3   (.35.)    0.969    0.070   13.913    0.000
    i6|t1   (.36.)   -2.201    0.100  -21.927    0.000
    i6|t2   (.37.)   -0.549    0.074   -7.408    0.000
    i6|t3   (.38.)    1.332    0.077   17.206    0.000
    i8|t1   (.39.)   -2.086    0.091  -22.854    0.000
    i8|t2   (.40.)   -0.590    0.060   -9.897    0.000
    i8|t3   (.41.)    1.147    0.063   18.206    0.000
    i9|t1   (.42.)   -1.926    0.089  -21.583    0.000
    i9|t2   (.43.)   -0.404    0.071   -5.670    0.000
    i9|t3   (.44.)    1.470    0.080   18.346    0.000
    i11|t1  (.45.)   -2.037    0.100  -20.429    0.000
    i11|t2  (.46.)   -0.464    0.075   -6.206    0.000
    i11|t3  (.47.)    1.432    0.082   17.484    0.000
    i12|t1  (.48.)   -1.640    0.084  -19.482    0.000
    i12|t2  (.49.)   -0.032    0.070   -0.453    0.651
    i12|t3  (.50.)    1.667    0.082   20.286    0.000
    i14|t1  (.51.)   -1.593    0.075  -21.293    0.000
    i14|t2  (.52.)   -0.161    0.059   -2.720    0.007
    i14|t3  (.53.)    1.431    0.071   20.298    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .i1                1.000                           
   .i2                1.000                           
   .i3                1.000                           
   .i5                1.000                           
   .i7                1.000                           
   .i10               1.000                           
   .i4                1.000                           
   .i6                1.000                           
   .i8                1.000                           
   .i9                1.000                           
   .i11               1.000                           
   .i12               1.000                           
   .i14               1.000                           
    presence          1.211    0.153    7.905    0.000
    acceptance        0.681    0.081    8.429    0.000

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)
    i1                0.788                           
    i2                0.809                           
    i3                0.824                           
    i5                0.653                           
    i7                0.637                           
    i10               0.654                           
    i4                0.762                           
    i6                0.718                           
    i8                0.833                           
    i9                0.732                           
    i11               0.713                           
    i12               0.731                           
    i14               0.823                           
Code
fitMeasures(cfa_med_non_med_cor_constrained_ordered_loadings_thresholds_residuals)
                         npar                          fmin 
                       58.000                         0.284 
                        chisq                            df 
                      575.096                       176.000 
                       pvalue                  chisq.scaled 
                        0.000                       698.255 
                    df.scaled                 pvalue.scaled 
                      176.000                         0.000 
         chisq.scaling.factor                baseline.chisq 
                        0.885                     24532.153 
                  baseline.df               baseline.pvalue 
                      156.000                         0.000 
        baseline.chisq.scaled            baseline.df.scaled 
                     9549.368                       156.000 
       baseline.pvalue.scaled baseline.chisq.scaling.factor 
                        0.000                         2.595 
                          cfi                           tli 
                        0.984                         0.985 
                   cfi.scaled                    tli.scaled 
                        0.944                         0.951 
                   cfi.robust                    tli.robust 
                           NA                            NA 
                         nnfi                           rfi 
                        0.985                            NA 
                          nfi                          pnfi 
                           NA                         1.102 
                          ifi                           rni 
                        0.984                         0.984 
                  nnfi.scaled                    rfi.scaled 
                        0.951                            NA 
                   nfi.scaled                   pnfi.scaled 
                           NA                         1.046 
                   ifi.scaled                    rni.scaled 
                        0.944                         0.944 
                  nnfi.robust                    rni.robust 
                           NA                            NA 
                        rmsea                rmsea.ci.lower 
                        0.067                         0.061 
               rmsea.ci.upper                rmsea.ci.level 
                        0.073                         0.900 
                 rmsea.pvalue                rmsea.close.h0 
                        0.000                         0.050 
        rmsea.notclose.pvalue             rmsea.notclose.h0 
                        0.000                         0.080 
                 rmsea.scaled         rmsea.ci.lower.scaled 
                        0.077                         0.071 
        rmsea.ci.upper.scaled           rmsea.pvalue.scaled 
                        0.083                         0.000 
 rmsea.notclose.pvalue.scaled                  rmsea.robust 
                        0.183                            NA 
        rmsea.ci.lower.robust         rmsea.ci.upper.robust 
                           NA                            NA 
          rmsea.pvalue.robust  rmsea.notclose.pvalue.robust 
                           NA                            NA 
                          rmr                    rmr_nomean 
                        0.073                         0.055 
                         srmr                  srmr_bentler 
                        0.055                         0.073 
          srmr_bentler_nomean                          crmr 
                        0.055                         0.077 
                  crmr_nomean                    srmr_mplus 
                        0.059                            NA 
            srmr_mplus_nomean                         cn_05 
                           NA                       366.216 
                        cn_01                           gfi 
                      391.871                         0.985 
                         agfi                          pgfi 
                        0.980                         0.741 
                          mfi                          wrmr 
                        0.821                         2.217 

10.5 Comparison of models

10.5.1 LR Tests

Code
invariance_analysis_results_anova <- 
anova(
  cfa_med_non_med_fmi13_ordered,
  cfa_med_non_med_cor_constrained_ordered_loadings,
  cfa_med_non_med_cor_constrained_ordered_loadings_thresholds,
  cfa_med_non_med_cor_constrained_ordered_loadings_thresholds_residuals) |>
  rownames_to_column() |> 
  as_tibble() |> 
  mutate(Invariance = c("Configural", "Weak", "Strong", "Strict")) |> 
  relocate(Invariance, everything()) |> 
  rename(model = rowname)

10.5.2 More fit indices

Code
invariance_analysis_results_fit_measures <-
  list(
    cfa_med_non_med_fmi13_ordered = 
      get_results_list(cfa_med_non_med_fmi13_ordered, 
                       "cfa_med_non_med_fmi13_ordered"),
    
       cfa_med_non_med_cor_constrained_ordered_loadings = 
      get_results_list(cfa_med_non_med_cor_constrained_ordered_loadings,
                       "cfa_med_non_med_cor_constrained_ordered_loadings"),
    
       cfa_med_non_med_cor_constrained_ordered_loadings_thresholds =
      get_results_list(cfa_med_non_med_cor_constrained_ordered_loadings_thresholds,
                       "cfa_med_non_med_cor_constrained_ordered_loadings_thresholds"),
    
       cfa_med_non_med_cor_constrained_ordered_loadings_thresholds_residuals =
      get_results_list(cfa_med_non_med_cor_constrained_ordered_loadings_thresholds_residuals,
                       "cfa_med_non_med_cor_constrained_ordered_loadings_thresholds_residuals")
      )


invariance_analysis_results_fit_measures_df <-
  bind_rows(invariance_analysis_results_fit_measures,
            .id = "type") |> 
  mutate(across(where(is.numeric), as.numeric)) |> 
  mutate(Invariance = c("Configural", "Weak", "Strong", "Strict")) |> 
  relocate(Invariance, everything()) |> 
  rownames_to_column() |> 
  rename(model = rowname)

# invariance_analysis_results_fit_measures_df  |> 
#   select(-c(type, obj_name)) |> 
#   kable()

10.5.3 Joint table 1

Code
invariance_analysis_results_anova_df <- 
invariance_analysis_results_anova |> 
  select(-c(model, AIC, BIC)) |> 
  left_join(invariance_analysis_results_fit_measures_df |> 
              select(-c(chisq, df, pvalue, model, obj_name, type, model_name)),
            by = "Invariance") |> 
  mutate(Invariance = paste0(1:4, ". ", Invariance)) |> 
  mutate(across(where(is.numeric), ~ round(., digits = 2))) |> 
  mutate(`Pr(>Chisq)` = round(`Pr(>Chisq)`, 3)) |> 
  select(Invariance, Chisq, Df, everything()) |> 
  mutate(`Pr(>Chisq)` = case_when(`Pr(>Chisq)` == "0" ~ "< 0.001")) |> 
  mutate(dCFI = cfi - lag(cfi),
         dRMSEA = rmsea - lag(rmsea)) |> 
  mutate_all(function(x) ifelse(is.na(x), "-", x)) 


invariance_analysis_results_anova_df |> 
  names() <- c("Invariance", "MLR χ²","df", "ΔMLR χ²", "Δdf", "p-value", "CFI", "TLI", "RMSEA", "SRMR", "ΔCFI", "ΔRMSEA") 

# invariance_analysis_results_anova_df$`p-value`[1] <- "-"
  
invariance_analysis_results_anova_df |> 
kable(align = c("l", 
                rep("r", ncol(invariance_analysis_results_anova_df) - 1)),
      digits = 2)
Invariance MLR χ² df ΔMLR χ² Δdf p-value CFI TLI RMSEA SRMR ΔCFI ΔRMSEA
1. Configural 298.43 128 - - - 0.99 0.99 0.05 0.05 - -
2. Weak 399.34 139 47.83 11 < 0.001 0.99 0.99 0.06 0.05 0 0.01
3. Strong 470.74 163 90.64 24 < 0.001 0.99 0.99 0.06 0.05 0 0
4. Strict 575.10 176 73.43 13 < 0.001 0.98 0.99 0.07 0.05 -0.01 0.01
Code
#  mutate_at(vars(Chisq, `Chisq diff`, cfi, tli, rmsea, srmr), ~ round(., 2))

10.5.4 Joint Table transposed

Code
invariance_analysis_results_anova_df_transposed <- 
invariance_analysis_results_anova_df |> 
  t() |> 
  as.data.frame() |> 
  rownames_to_column() |> 
  slice(-1)

names(invariance_analysis_results_anova_df_transposed) <-
  c("Coefficient", "M1: Configural", "M2: Weak", "M3: Strong", "M4: Strict")

invariance_analysis_results_anova_df_transposed |> 
  kable()
Coefficient M1: Configural M2: Weak M3: Strong M4: Strict
MLR χ² 298.43 399.34 470.74 575.10
df 128 139 163 176
ΔMLR χ² - 47.83 90.64 73.43
Δdf - 11 24 13
p-value - < 0.001 < 0.001 < 0.001
CFI 0.99 0.99 0.99 0.98
TLI 0.99 0.99 0.99 0.99
RMSEA 0.05 0.06 0.06 0.07
SRMR 0.05 0.05 0.05 0.05
ΔCFI - 0 0 -0.01
ΔRMSEA - 0.01 0 0.01

11 Norm values for different subgroups

The following subgroup variables were considered:

Code
subgroup_vars <- c("Geschlecht", "Achts_regel", "Retreats", "Vip_regel", "age_below_md")
subgroup_vars
[1] "Geschlecht"   "Achts_regel"  "Retreats"     "Vip_regel"    "age_below_md"

11.1 Split by sex

Code
d_w_items_two_sexes <- 
d_w_items |> 
  mutate(Geschlecht = as.character(Geschlecht)) %>% 
  filter(!Geschlecht == "other")

11.1.1 Stats

Code
d_w_items_two_sexes %>% 
  #filter(Geschlecht %in% c("männlich", "weiblich")) %>% 
  describe_fmi_stats(
                     var = Geschlecht)
Variable Geschlecht Mean Mean_01 SD Range Quartiles Skewness Kurtosis n n_Missing
acceptance13_mean female 1.73 0.58 0.57 (0.00, 3.00) 1.29, 2.07 -0.09 -0.13 515 0
acceptance13_mean male 1.74 0.58 0.59 (0.00, 3.00) 1.43, 2.00 -0.34 0.65 495 0
fmi13_mean female 1.71 0.57 0.51 (0.21, 3.00) 1.36, 2.07 -0.11 -0.27 515 0
fmi13_mean male 1.71 0.57 0.51 (0.21, 3.00) 1.43, 2.00 -0.19 0.58 495 0
fmi14_mean female 1.71 0.57 0.51 (0.21, 3.00) 1.36, 2.07 -0.11 -0.27 515 0
fmi14_mean male 1.71 0.57 0.51 (0.21, 3.00) 1.43, 2.00 -0.19 0.58 495 0
presence_mean female 1.72 0.57 0.58 (0.00, 3.00) 1.33, 2.00 -0.11 -0.10 515 0
presence_mean male 1.67 0.56 0.60 (0.00, 3.00) 1.33, 2.00 -0.35 0.42 495 0

Plot:

Code
#undebug(plot_fmi_descriptives)
d_w_items_two_sexes |> 
  plot_fmi_descriptives(var = Geschlecht) 

11.1.2 Norms

Code
col_names <- c("Mean", "Percent (empirical)", "z", "Stanine", "T", "Percent (normal)")

for (i in unique(d_w_items_two_sexes$Geschlecht)) { 
  cat("Group: ", i, "\n")
  cat("\n")
  d_w_items_two_sexes %>% 
    filter(Geschlecht == i) %>% 
    select(ends_with("_mean")) %>% 
    map(~ knitr::kable(compute_all_norms(., min_score = 0, max_score = 3, by = .1), 
                       digits = 2, col.names = col_names))  %>% print()
}

Group: male

$fmi13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.33 1.00 16.67 0.00
0.1 0.00 -3.14 1.00 18.61 0.00
0.2 0.00 -2.94 1.00 20.56 0.00
0.3 0.01 -2.75 1.00 22.50 0.00
0.4 0.02 -2.55 1.00 24.45 0.01
0.5 0.02 -2.36 1.00 26.40 0.01
0.6 0.03 -2.17 1.00 28.34 0.02
0.7 0.03 -1.97 1.06 30.29 0.02
0.8 0.05 -1.78 1.45 32.23 0.04
0.9 0.05 -1.58 1.84 34.18 0.06
1.0 0.08 -1.39 2.23 36.13 0.08
1.1 0.12 -1.19 2.61 38.07 0.12
1.2 0.15 -1.00 3.00 40.02 0.16
1.3 0.19 -0.80 3.39 41.96 0.21
1.4 0.23 -0.61 3.78 43.91 0.27
1.5 0.33 -0.41 4.17 45.86 0.34
1.6 0.39 -0.22 4.56 47.80 0.41
1.7 0.46 -0.03 4.95 49.75 0.49
1.8 0.59 0.17 5.34 51.69 0.57
1.9 0.65 0.36 5.73 53.64 0.64
2.0 0.77 0.56 6.12 55.58 0.71
2.1 0.81 0.75 6.51 57.53 0.77
2.2 0.84 0.95 6.90 59.48 0.83
2.3 0.90 1.14 7.28 61.42 0.87
2.4 0.91 1.34 7.67 63.37 0.91
2.5 0.94 1.53 8.06 65.31 0.94
2.6 0.96 1.73 8.45 67.26 0.96
2.7 0.96 1.92 8.84 69.21 0.97
2.8 0.98 2.12 9.00 71.15 0.98
2.9 0.98 2.31 9.00 73.10 0.99
3.0 1.00 2.50 9.00 75.04 0.99

$presence_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.02 -2.77 1.00 22.27 0.00
0.1 0.02 -2.61 1.00 23.92 0.00
0.2 0.03 -2.44 1.00 25.58 0.01
0.3 0.03 -2.28 1.00 27.24 0.01
0.4 0.04 -2.11 1.00 28.90 0.02
0.5 0.05 -1.94 1.11 30.55 0.03
0.6 0.05 -1.78 1.44 32.21 0.04
0.7 0.07 -1.61 1.77 33.87 0.05
0.8 0.07 -1.45 2.11 35.53 0.07
0.9 0.10 -1.28 2.44 37.18 0.10
1.0 0.15 -1.12 2.77 38.84 0.13
1.1 0.15 -0.95 3.10 40.50 0.17
1.2 0.21 -0.78 3.43 42.15 0.22
1.3 0.21 -0.62 3.76 43.81 0.27
1.4 0.29 -0.45 4.09 45.47 0.33
1.5 0.40 -0.29 4.43 47.13 0.39
1.6 0.40 -0.12 4.76 48.78 0.45
1.7 0.53 0.04 5.09 50.44 0.52
1.8 0.53 0.21 5.42 52.10 0.58
1.9 0.65 0.38 5.75 53.76 0.65
2.0 0.78 0.54 6.08 55.41 0.71
2.1 0.78 0.71 6.41 57.07 0.76
2.2 0.86 0.87 6.75 58.73 0.81
2.3 0.86 1.04 7.08 60.38 0.85
2.4 0.90 1.20 7.41 62.04 0.89
2.5 0.94 1.37 7.74 63.70 0.91
2.6 0.94 1.54 8.07 65.36 0.94
2.7 0.96 1.70 8.40 67.01 0.96
2.8 0.96 1.87 8.73 68.67 0.97
2.9 0.97 2.03 9.00 70.33 0.98
3.0 1.00 2.20 9.00 71.99 0.99

$acceptance13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.01 -2.96 1.00 20.4 0.00
0.1 0.01 -2.79 1.00 22.1 0.00
0.2 0.02 -2.62 1.00 23.8 0.00
0.3 0.03 -2.45 1.00 25.5 0.01
0.4 0.03 -2.28 1.00 27.2 0.01
0.5 0.03 -2.11 1.00 28.9 0.02
0.6 0.04 -1.94 1.12 30.6 0.03
0.7 0.04 -1.77 1.46 32.3 0.04
0.8 0.05 -1.60 1.80 34.0 0.05
0.9 0.06 -1.43 2.14 35.7 0.08
1.0 0.12 -1.26 2.48 37.4 0.10
1.1 0.12 -1.09 2.82 39.1 0.14
1.2 0.15 -0.92 3.16 40.8 0.18
1.3 0.22 -0.75 3.50 42.5 0.23
1.4 0.22 -0.58 3.84 44.2 0.28
1.5 0.31 -0.41 4.18 45.9 0.34
1.6 0.41 -0.24 4.52 47.6 0.41
1.7 0.41 -0.07 4.86 49.3 0.47
1.8 0.51 0.10 5.20 51.0 0.54
1.9 0.62 0.27 5.54 52.7 0.61
2.0 0.76 0.44 5.88 54.4 0.67
2.1 0.76 0.61 6.22 56.1 0.73
2.2 0.82 0.78 6.56 57.8 0.78
2.3 0.86 0.95 6.90 59.5 0.83
2.4 0.86 1.12 7.24 61.2 0.87
2.5 0.90 1.29 7.58 62.9 0.90
2.6 0.94 1.46 7.92 64.6 0.93
2.7 0.94 1.63 8.26 66.3 0.95
2.8 0.96 1.80 8.60 68.0 0.96
2.9 0.97 1.97 8.94 69.7 0.98
3.0 1.00 2.14 9.00 71.4 0.98

$fmi14_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.33 1.00 16.67 0.00
0.1 0.00 -3.14 1.00 18.61 0.00
0.2 0.00 -2.94 1.00 20.56 0.00
0.3 0.01 -2.75 1.00 22.50 0.00
0.4 0.02 -2.55 1.00 24.45 0.01
0.5 0.02 -2.36 1.00 26.40 0.01
0.6 0.03 -2.17 1.00 28.34 0.02
0.7 0.03 -1.97 1.06 30.29 0.02
0.8 0.05 -1.78 1.45 32.23 0.04
0.9 0.05 -1.58 1.84 34.18 0.06
1.0 0.08 -1.39 2.23 36.13 0.08
1.1 0.12 -1.19 2.61 38.07 0.12
1.2 0.15 -1.00 3.00 40.02 0.16
1.3 0.19 -0.80 3.39 41.96 0.21
1.4 0.23 -0.61 3.78 43.91 0.27
1.5 0.33 -0.41 4.17 45.86 0.34
1.6 0.39 -0.22 4.56 47.80 0.41
1.7 0.46 -0.03 4.95 49.75 0.49
1.8 0.59 0.17 5.34 51.69 0.57
1.9 0.65 0.36 5.73 53.64 0.64
2.0 0.77 0.56 6.12 55.58 0.71
2.1 0.81 0.75 6.51 57.53 0.77
2.2 0.84 0.95 6.90 59.48 0.83
2.3 0.90 1.14 7.28 61.42 0.87
2.4 0.91 1.34 7.67 63.37 0.91
2.5 0.94 1.53 8.06 65.31 0.94
2.6 0.96 1.73 8.45 67.26 0.96
2.7 0.96 1.92 8.84 69.21 0.97
2.8 0.98 2.12 9.00 71.15 0.98
2.9 0.98 2.31 9.00 73.10 0.99
3.0 1.00 2.50 9.00 75.04 0.99

Group: female

$fmi13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.39 1.00 16.10 0.00
0.1 0.00 -3.19 1.00 18.08 0.00
0.2 0.00 -2.99 1.00 20.06 0.00
0.3 0.00 -2.80 1.00 22.03 0.00
0.4 0.00 -2.60 1.00 24.01 0.00
0.5 0.01 -2.40 1.00 25.99 0.01
0.6 0.01 -2.20 1.00 27.96 0.01
0.7 0.02 -2.01 1.00 29.94 0.02
0.8 0.04 -1.81 1.38 31.92 0.04
0.9 0.06 -1.61 1.78 33.89 0.05
1.0 0.10 -1.41 2.17 35.87 0.08
1.1 0.13 -1.22 2.57 37.85 0.11
1.2 0.15 -1.02 2.97 39.83 0.15
1.3 0.23 -0.82 3.36 41.80 0.21
1.4 0.28 -0.62 3.76 43.78 0.27
1.5 0.35 -0.42 4.15 45.76 0.34
1.6 0.40 -0.23 4.55 47.73 0.41
1.7 0.44 -0.03 4.94 49.71 0.49
1.8 0.57 0.17 5.34 51.69 0.57
1.9 0.62 0.37 5.73 53.66 0.64
2.0 0.75 0.56 6.13 55.64 0.71
2.1 0.79 0.76 6.52 57.62 0.78
2.2 0.83 0.96 6.92 59.59 0.83
2.3 0.88 1.16 7.31 61.57 0.88
2.4 0.90 1.35 7.71 63.55 0.91
2.5 0.95 1.55 8.10 65.52 0.94
2.6 0.97 1.75 8.50 67.50 0.96
2.7 0.97 1.95 8.90 69.48 0.97
2.8 1.00 2.15 9.00 71.45 0.98
2.9 1.00 2.34 9.00 73.43 0.99
3.0 1.00 2.54 9.00 75.41 0.99

$presence_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -2.95 1.00 20.46 0.00
0.1 0.00 -2.78 1.00 22.18 0.00
0.2 0.01 -2.61 1.00 23.89 0.00
0.3 0.01 -2.44 1.00 25.61 0.01
0.4 0.01 -2.27 1.00 27.32 0.01
0.5 0.03 -2.10 1.00 29.04 0.02
0.6 0.03 -1.92 1.15 30.75 0.03
0.7 0.06 -1.75 1.49 32.47 0.04
0.8 0.06 -1.58 1.84 34.19 0.06
0.9 0.09 -1.41 2.18 35.90 0.08
1.0 0.14 -1.24 2.52 37.62 0.11
1.1 0.14 -1.07 2.87 39.33 0.14
1.2 0.20 -0.90 3.21 41.05 0.19
1.3 0.20 -0.72 3.55 42.77 0.23
1.4 0.29 -0.55 3.90 44.48 0.29
1.5 0.39 -0.38 4.24 46.20 0.35
1.6 0.39 -0.21 4.58 47.91 0.42
1.7 0.50 -0.04 4.93 49.63 0.49
1.8 0.50 0.13 5.27 51.34 0.55
1.9 0.63 0.31 5.61 53.06 0.62
2.0 0.76 0.48 5.96 54.78 0.68
2.1 0.76 0.65 6.30 56.49 0.74
2.2 0.82 0.82 6.64 58.21 0.79
2.3 0.82 0.99 6.98 59.92 0.84
2.4 0.88 1.16 7.33 61.64 0.88
2.5 0.93 1.34 7.67 63.35 0.91
2.6 0.93 1.51 8.01 65.07 0.93
2.7 0.95 1.68 8.36 66.79 0.95
2.8 0.95 1.85 8.70 68.50 0.97
2.9 0.98 2.02 9.00 70.22 0.98
3.0 1.00 2.19 9.00 71.93 0.99

$acceptance13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.02 1.00 19.77 0.00
0.1 0.00 -2.85 1.00 21.52 0.00
0.2 0.00 -2.67 1.00 23.27 0.00
0.3 0.01 -2.50 1.00 25.02 0.01
0.4 0.01 -2.32 1.00 26.77 0.01
0.5 0.02 -2.15 1.00 28.53 0.02
0.6 0.03 -1.97 1.06 30.28 0.02
0.7 0.03 -1.80 1.41 32.03 0.04
0.8 0.05 -1.62 1.76 33.78 0.05
0.9 0.09 -1.45 2.11 35.53 0.07
1.0 0.14 -1.27 2.46 37.28 0.10
1.1 0.14 -1.10 2.81 39.03 0.14
1.2 0.18 -0.92 3.16 40.78 0.18
1.3 0.26 -0.75 3.51 42.53 0.23
1.4 0.26 -0.57 3.86 44.28 0.28
1.5 0.34 -0.40 4.21 46.03 0.35
1.6 0.42 -0.22 4.56 47.78 0.41
1.7 0.42 -0.05 4.91 49.53 0.48
1.8 0.51 0.13 5.26 51.28 0.55
1.9 0.63 0.30 5.61 53.03 0.62
2.0 0.75 0.48 5.96 54.78 0.68
2.1 0.75 0.65 6.31 56.53 0.74
2.2 0.83 0.83 6.66 58.28 0.80
2.3 0.87 1.00 7.01 60.03 0.84
2.4 0.87 1.18 7.36 61.79 0.88
2.5 0.90 1.35 7.71 63.54 0.91
2.6 0.93 1.53 8.06 65.29 0.94
2.7 0.93 1.70 8.41 67.04 0.96
2.8 0.97 1.88 8.76 68.79 0.97
2.9 0.98 2.05 9.00 70.54 0.98
3.0 1.00 2.23 9.00 72.29 0.99

$fmi14_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.39 1.00 16.10 0.00
0.1 0.00 -3.19 1.00 18.08 0.00
0.2 0.00 -2.99 1.00 20.06 0.00
0.3 0.00 -2.80 1.00 22.03 0.00
0.4 0.00 -2.60 1.00 24.01 0.00
0.5 0.01 -2.40 1.00 25.99 0.01
0.6 0.01 -2.20 1.00 27.96 0.01
0.7 0.02 -2.01 1.00 29.94 0.02
0.8 0.04 -1.81 1.38 31.92 0.04
0.9 0.06 -1.61 1.78 33.89 0.05
1.0 0.10 -1.41 2.17 35.87 0.08
1.1 0.13 -1.22 2.57 37.85 0.11
1.2 0.15 -1.02 2.97 39.83 0.15
1.3 0.23 -0.82 3.36 41.80 0.21
1.4 0.28 -0.62 3.76 43.78 0.27
1.5 0.35 -0.42 4.15 45.76 0.34
1.6 0.40 -0.23 4.55 47.73 0.41
1.7 0.44 -0.03 4.94 49.71 0.49
1.8 0.57 0.17 5.34 51.69 0.57
1.9 0.62 0.37 5.73 53.66 0.64
2.0 0.75 0.56 6.13 55.64 0.71
2.1 0.79 0.76 6.52 57.62 0.78
2.2 0.83 0.96 6.92 59.59 0.83
2.3 0.88 1.16 7.31 61.57 0.88
2.4 0.90 1.35 7.71 63.55 0.91
2.5 0.95 1.55 8.10 65.52 0.94
2.6 0.97 1.75 8.50 67.50 0.96
2.7 0.97 1.95 8.90 69.48 0.97
2.8 1.00 2.15 9.00 71.45 0.98
2.9 1.00 2.34 9.00 73.43 0.99
3.0 1.00 2.54 9.00 75.41 0.99

11.2 Split by continuous mindfulness training

11.2.1 Stats

Code
describe_fmi_stats(data = d_w_items_two_sexes,
                   var = Achts_regel)
Variable Achts_regel Mean Mean_01 SD Range Quartiles Skewness Kurtosis n n_Missing
acceptance13_mean no 1.71 0.57 0.59 (0.00, 3.00) 1.29, 2.00 -0.21 0.18 791 0
acceptance13_mean yes 1.80 0.60 0.55 (0.00, 3.00) 1.43, 2.14 -0.20 0.64 219 0
fmi13_mean no 1.69 0.56 0.51 (0.21, 3.00) 1.36, 2.00 -0.16 0.05 791 0
fmi13_mean yes 1.81 0.60 0.49 (0.21, 3.00) 1.50, 2.07 -0.03 0.53 219 0
fmi14_mean no 1.69 0.56 0.51 (0.21, 3.00) 1.36, 2.00 -0.16 0.05 791 0
fmi14_mean yes 1.81 0.60 0.49 (0.21, 3.00) 1.50, 2.07 -0.03 0.53 219 0
presence_mean no 1.65 0.55 0.59 (0.00, 3.00) 1.33, 2.00 -0.24 0.13 791 0
presence_mean yes 1.86 0.62 0.56 (0.00, 3.00) 1.50, 2.17 -0.20 0.46 219 0
Code
plot_fmi_descriptives(data = d_w_items_two_sexes,
                      var = Achts_regel)

11.2.2 Norms

Code
col_names <- c("Mean", "Percent (empirical)", "z", "Stanine", "T", "Percent (normal)")

for (i in unique(d_w_items_two_sexes$Achts_regel)) { 
  cat("Group: ", i, "\n")
  d_w_items_two_sexes %>% 
    filter(Achts_regel == i) %>% 
    select(ends_with("_mean")) %>% 
    map(~ knitr::kable(compute_all_norms(., min_score = 0, max_score = 3, by = .1), 
                       digits = 2, col.names = col_names)) %>% print()
}

Group: no $fmi13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.29 1.00 17.13 0.00
0.1 0.00 -3.09 1.00 19.08 0.00
0.2 0.00 -2.90 1.00 21.03 0.00
0.3 0.01 -2.70 1.00 22.97 0.00
0.4 0.01 -2.51 1.00 24.92 0.01
0.5 0.02 -2.31 1.00 26.87 0.01
0.6 0.03 -2.12 1.00 28.82 0.02
0.7 0.03 -1.92 1.15 30.77 0.03
0.8 0.05 -1.73 1.54 32.72 0.04
0.9 0.06 -1.53 1.93 34.67 0.06
1.0 0.10 -1.34 2.32 36.62 0.09
1.1 0.13 -1.14 2.71 38.57 0.13
1.2 0.17 -0.95 3.10 40.52 0.17
1.3 0.23 -0.75 3.49 42.47 0.23
1.4 0.27 -0.56 3.88 44.41 0.29
1.5 0.36 -0.36 4.27 46.36 0.36
1.6 0.42 -0.17 4.66 48.31 0.43
1.7 0.48 0.03 5.05 50.26 0.51
1.8 0.60 0.22 5.44 52.21 0.59
1.9 0.65 0.42 5.83 54.16 0.66
2.0 0.78 0.61 6.22 56.11 0.73
2.1 0.81 0.81 6.61 58.06 0.79
2.2 0.84 1.00 7.00 60.01 0.84
2.3 0.90 1.20 7.39 61.96 0.88
2.4 0.91 1.39 7.78 63.91 0.92
2.5 0.95 1.59 8.17 65.85 0.94
2.6 0.97 1.78 8.56 67.80 0.96
2.7 0.97 1.98 8.95 69.75 0.98
2.8 0.99 2.17 9.00 71.70 0.99
2.9 0.99 2.37 9.00 73.65 0.99
3.0 1.00 2.56 9.00 75.60 0.99

$presence_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.01 -2.78 1.00 22.19 0.00
0.1 0.01 -2.61 1.00 23.87 0.00
0.2 0.02 -2.44 1.00 25.56 0.01
0.3 0.02 -2.28 1.00 27.24 0.01
0.4 0.03 -2.11 1.00 28.92 0.02
0.5 0.05 -1.94 1.12 30.60 0.03
0.6 0.05 -1.77 1.46 32.28 0.04
0.7 0.07 -1.60 1.79 33.97 0.05
0.8 0.07 -1.44 2.13 35.65 0.08
0.9 0.10 -1.27 2.47 37.33 0.10
1.0 0.16 -1.10 2.80 39.01 0.14
1.1 0.16 -0.93 3.14 40.70 0.18
1.2 0.23 -0.76 3.48 42.38 0.22
1.3 0.23 -0.59 3.81 44.06 0.28
1.4 0.31 -0.43 4.15 45.74 0.34
1.5 0.43 -0.26 4.49 47.43 0.40
1.6 0.43 -0.09 4.82 49.11 0.46
1.7 0.55 0.08 5.16 50.79 0.53
1.8 0.55 0.25 5.49 52.47 0.60
1.9 0.67 0.42 5.83 54.16 0.66
2.0 0.79 0.58 6.17 55.84 0.72
2.1 0.79 0.75 6.50 57.52 0.77
2.2 0.85 0.92 6.84 59.20 0.82
2.3 0.85 1.09 7.18 60.89 0.86
2.4 0.90 1.26 7.51 62.57 0.90
2.5 0.94 1.43 7.85 64.25 0.92
2.6 0.94 1.59 8.19 65.93 0.94
2.7 0.97 1.76 8.52 67.62 0.96
2.8 0.97 1.93 8.86 69.30 0.97
2.9 0.98 2.10 9.00 70.98 0.98
3.0 1.00 2.27 9.00 72.66 0.99

$acceptance13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.01 -2.92 1.00 20.80 0.00
0.1 0.01 -2.75 1.00 22.50 0.00
0.2 0.01 -2.58 1.00 24.21 0.00
0.3 0.02 -2.41 1.00 25.91 0.01
0.4 0.02 -2.24 1.00 27.61 0.01
0.5 0.03 -2.07 1.00 29.32 0.02
0.6 0.04 -1.90 1.20 31.02 0.03
0.7 0.04 -1.73 1.54 32.72 0.04
0.8 0.06 -1.56 1.89 34.43 0.06
0.9 0.09 -1.39 2.23 36.13 0.08
1.0 0.14 -1.22 2.57 37.83 0.11
1.1 0.14 -1.05 2.91 39.53 0.15
1.2 0.18 -0.88 3.25 41.24 0.19
1.3 0.26 -0.71 3.59 42.94 0.24
1.4 0.26 -0.54 3.93 44.64 0.30
1.5 0.34 -0.37 4.27 46.35 0.36
1.6 0.43 -0.19 4.61 48.05 0.42
1.7 0.43 -0.02 4.95 49.75 0.49
1.8 0.53 0.15 5.29 51.46 0.56
1.9 0.64 0.32 5.63 53.16 0.62
2.0 0.76 0.49 5.97 54.86 0.69
2.1 0.76 0.66 6.31 56.57 0.74
2.2 0.82 0.83 6.65 58.27 0.80
2.3 0.87 1.00 6.99 59.97 0.84
2.4 0.87 1.17 7.34 61.68 0.88
2.5 0.90 1.34 7.68 63.38 0.91
2.6 0.94 1.51 8.02 65.08 0.93
2.7 0.94 1.68 8.36 66.79 0.95
2.8 0.96 1.85 8.70 68.49 0.97
2.9 0.98 2.02 9.00 70.19 0.98
3.0 1.00 2.19 9.00 71.89 0.99

$fmi14_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.29 1.00 17.13 0.00
0.1 0.00 -3.09 1.00 19.08 0.00
0.2 0.00 -2.90 1.00 21.03 0.00
0.3 0.01 -2.70 1.00 22.97 0.00
0.4 0.01 -2.51 1.00 24.92 0.01
0.5 0.02 -2.31 1.00 26.87 0.01
0.6 0.03 -2.12 1.00 28.82 0.02
0.7 0.03 -1.92 1.15 30.77 0.03
0.8 0.05 -1.73 1.54 32.72 0.04
0.9 0.06 -1.53 1.93 34.67 0.06
1.0 0.10 -1.34 2.32 36.62 0.09
1.1 0.13 -1.14 2.71 38.57 0.13
1.2 0.17 -0.95 3.10 40.52 0.17
1.3 0.23 -0.75 3.49 42.47 0.23
1.4 0.27 -0.56 3.88 44.41 0.29
1.5 0.36 -0.36 4.27 46.36 0.36
1.6 0.42 -0.17 4.66 48.31 0.43
1.7 0.48 0.03 5.05 50.26 0.51
1.8 0.60 0.22 5.44 52.21 0.59
1.9 0.65 0.42 5.83 54.16 0.66
2.0 0.78 0.61 6.22 56.11 0.73
2.1 0.81 0.81 6.61 58.06 0.79
2.2 0.84 1.00 7.00 60.01 0.84
2.3 0.90 1.20 7.39 61.96 0.88
2.4 0.91 1.39 7.78 63.91 0.92
2.5 0.95 1.59 8.17 65.85 0.94
2.6 0.97 1.78 8.56 67.80 0.96
2.7 0.97 1.98 8.95 69.75 0.98
2.8 0.99 2.17 9.00 71.70 0.99
2.9 0.99 2.37 9.00 73.65 0.99
3.0 1.00 2.56 9.00 75.60 0.99

Group: yes $fmi13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.74 1.00 12.65 0.00
0.1 0.00 -3.53 1.00 14.71 0.00
0.2 0.00 -3.32 1.00 16.77 0.00
0.3 0.01 -3.12 1.00 18.83 0.00
0.4 0.01 -2.91 1.00 20.89 0.00
0.5 0.01 -2.70 1.00 22.95 0.00
0.6 0.01 -2.50 1.00 25.01 0.01
0.7 0.01 -2.29 1.00 27.07 0.01
0.8 0.02 -2.09 1.00 29.13 0.02
0.9 0.02 -1.88 1.24 31.19 0.03
1.0 0.06 -1.67 1.65 33.26 0.05
1.1 0.08 -1.47 2.06 35.32 0.07
1.2 0.09 -1.26 2.48 37.38 0.10
1.3 0.14 -1.06 2.89 39.44 0.15
1.4 0.19 -0.85 3.30 41.50 0.20
1.5 0.27 -0.64 3.71 43.56 0.26
1.6 0.32 -0.44 4.12 45.62 0.33
1.7 0.37 -0.23 4.54 47.68 0.41
1.8 0.51 -0.03 4.95 49.74 0.49
1.9 0.57 0.18 5.36 51.80 0.57
2.0 0.69 0.39 5.77 53.87 0.65
2.1 0.77 0.59 6.19 55.93 0.72
2.2 0.81 0.80 6.60 57.99 0.79
2.3 0.87 1.00 7.01 60.05 0.84
2.4 0.90 1.21 7.42 62.11 0.89
2.5 0.92 1.42 7.83 64.17 0.92
2.6 0.94 1.62 8.25 66.23 0.95
2.7 0.95 1.83 8.66 68.29 0.97
2.8 0.97 2.04 9.00 70.35 0.98
2.9 0.98 2.24 9.00 72.41 0.99
3.0 1.00 2.45 9.00 74.47 0.99

$presence_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.01 -3.32 1.00 16.82 0.00
0.1 0.01 -3.14 1.00 18.60 0.00
0.2 0.01 -2.96 1.00 20.39 0.00
0.3 0.01 -2.78 1.00 22.17 0.00
0.4 0.01 -2.60 1.00 23.95 0.00
0.5 0.01 -2.43 1.00 25.74 0.01
0.6 0.01 -2.25 1.00 27.52 0.01
0.7 0.02 -2.07 1.00 29.30 0.02
0.8 0.02 -1.89 1.22 31.09 0.03
0.9 0.05 -1.71 1.57 32.87 0.04
1.0 0.09 -1.53 1.93 34.65 0.06
1.1 0.09 -1.36 2.29 36.43 0.09
1.2 0.12 -1.18 2.64 38.22 0.12
1.3 0.12 -1.00 3.00 40.00 0.16
1.4 0.20 -0.82 3.36 41.78 0.21
1.5 0.29 -0.64 3.71 43.57 0.26
1.6 0.29 -0.46 4.07 45.35 0.32
1.7 0.39 -0.29 4.43 47.13 0.39
1.8 0.39 -0.11 4.78 48.92 0.46
1.9 0.53 0.07 5.14 50.70 0.53
2.0 0.69 0.25 5.50 52.48 0.60
2.1 0.69 0.43 5.85 54.27 0.67
2.2 0.79 0.60 6.21 56.05 0.73
2.3 0.79 0.78 6.57 57.83 0.78
2.4 0.85 0.96 6.92 59.62 0.83
2.5 0.90 1.14 7.28 61.40 0.87
2.6 0.90 1.32 7.64 63.18 0.91
2.7 0.92 1.50 7.99 64.97 0.93
2.8 0.92 1.67 8.35 66.75 0.95
2.9 0.96 1.85 8.71 68.53 0.97
3.0 1.00 2.03 9.00 70.32 0.98

$acceptance13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.30 1.00 16.97 0.00
0.1 0.00 -3.12 1.00 18.80 0.00
0.2 0.01 -2.94 1.00 20.63 0.00
0.3 0.01 -2.75 1.00 22.46 0.00
0.4 0.01 -2.57 1.00 24.30 0.01
0.5 0.02 -2.39 1.00 26.13 0.01
0.6 0.02 -2.20 1.00 27.96 0.01
0.7 0.02 -2.02 1.00 29.79 0.02
0.8 0.03 -1.84 1.32 31.62 0.03
0.9 0.05 -1.65 1.69 33.45 0.05
1.0 0.09 -1.47 2.06 35.28 0.07
1.1 0.09 -1.29 2.42 37.11 0.10
1.2 0.12 -1.11 2.79 38.95 0.13
1.3 0.18 -0.92 3.16 40.78 0.18
1.4 0.18 -0.74 3.52 42.61 0.23
1.5 0.26 -0.56 3.89 44.44 0.29
1.6 0.37 -0.37 4.25 46.27 0.35
1.7 0.37 -0.19 4.62 48.10 0.42
1.8 0.45 -0.01 4.99 49.93 0.50
1.9 0.59 0.18 5.35 51.76 0.57
2.0 0.73 0.36 5.72 53.60 0.64
2.1 0.73 0.54 6.09 55.43 0.71
2.2 0.83 0.73 6.45 57.26 0.77
2.3 0.86 0.91 6.82 59.09 0.82
2.4 0.86 1.09 7.18 60.92 0.86
2.5 0.89 1.28 7.55 62.75 0.90
2.6 0.92 1.46 7.92 64.58 0.93
2.7 0.92 1.64 8.28 66.41 0.95
2.8 0.95 1.82 8.65 68.25 0.97
2.9 0.97 2.01 9.00 70.08 0.98
3.0 1.00 2.19 9.00 71.91 0.99

$fmi14_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.74 1.00 12.65 0.00
0.1 0.00 -3.53 1.00 14.71 0.00
0.2 0.00 -3.32 1.00 16.77 0.00
0.3 0.01 -3.12 1.00 18.83 0.00
0.4 0.01 -2.91 1.00 20.89 0.00
0.5 0.01 -2.70 1.00 22.95 0.00
0.6 0.01 -2.50 1.00 25.01 0.01
0.7 0.01 -2.29 1.00 27.07 0.01
0.8 0.02 -2.09 1.00 29.13 0.02
0.9 0.02 -1.88 1.24 31.19 0.03
1.0 0.06 -1.67 1.65 33.26 0.05
1.1 0.08 -1.47 2.06 35.32 0.07
1.2 0.09 -1.26 2.48 37.38 0.10
1.3 0.14 -1.06 2.89 39.44 0.15
1.4 0.19 -0.85 3.30 41.50 0.20
1.5 0.27 -0.64 3.71 43.56 0.26
1.6 0.32 -0.44 4.12 45.62 0.33
1.7 0.37 -0.23 4.54 47.68 0.41
1.8 0.51 -0.03 4.95 49.74 0.49
1.9 0.57 0.18 5.36 51.80 0.57
2.0 0.69 0.39 5.77 53.87 0.65
2.1 0.77 0.59 6.19 55.93 0.72
2.2 0.81 0.80 6.60 57.99 0.79
2.3 0.87 1.00 7.01 60.05 0.84
2.4 0.90 1.21 7.42 62.11 0.89
2.5 0.92 1.42 7.83 64.17 0.92
2.6 0.94 1.62 8.25 66.23 0.95
2.7 0.95 1.83 8.66 68.29 0.97
2.8 0.97 2.04 9.00 70.35 0.98
2.9 0.98 2.24 9.00 72.41 0.99
3.0 1.00 2.45 9.00 74.47 0.99

11.3 Split by retreats

11.3.1 Stats

Code
describe_fmi_stats(data = d_w_items_two_sexes,
                   var = Retreats)
Variable Retreats Mean Mean_01 SD Range Quartiles Skewness Kurtosis n n_Missing
acceptance13_mean Multiple retreats per year 1.81 0.60 0.48 (0.71, 3.00) 1.57, 2.07 -0.05 -0.06 115 0
acceptance13_mean Never 1.70 0.57 0.60 (0.00, 3.00) 1.29, 2.00 -0.27 0.21 672 0
acceptance13_mean Once a year 1.73 0.58 0.50 (0.71, 3.00) 1.43, 2.00 0.59 0.46 58 0
acceptance13_mean Once every couple of years 1.74 0.58 0.53 (0.29, 3.00) 1.43, 2.11 0.14 0.12 86 0
acceptance13_mean Rarely 1.93 0.64 0.63 (0.14, 3.00) 1.57, 2.29 -0.38 0.35 79 0
fmi13_mean Multiple retreats per year 1.82 0.61 0.43 (0.71, 3.00) 1.57, 2.00 0.01 0.35 115 0
fmi13_mean Never 1.68 0.56 0.52 (0.21, 3.00) 1.36, 2.00 -0.18 0.10 672 0
fmi13_mean Once a year 1.71 0.57 0.45 (0.57, 2.93) 1.43, 1.98 0.30 0.36 58 0
fmi13_mean Once every couple of years 1.71 0.57 0.46 (0.93, 2.93) 1.36, 2.07 0.38 -0.32 86 0
fmi13_mean Rarely 1.89 0.63 0.55 (0.29, 2.79) 1.57, 2.29 -0.51 0.60 79 0
fmi14_mean Multiple retreats per year 1.82 0.61 0.43 (0.71, 3.00) 1.57, 2.00 0.01 0.35 115 0
fmi14_mean Never 1.68 0.56 0.52 (0.21, 3.00) 1.36, 2.00 -0.18 0.10 672 0
fmi14_mean Once a year 1.71 0.57 0.45 (0.57, 2.93) 1.43, 1.98 0.30 0.36 58 0
fmi14_mean Once every couple of years 1.71 0.57 0.46 (0.93, 2.93) 1.36, 2.07 0.38 -0.32 86 0
fmi14_mean Rarely 1.89 0.63 0.55 (0.29, 2.79) 1.57, 2.29 -0.51 0.60 79 0
presence_mean Multiple retreats per year 1.85 0.62 0.50 (0.33, 3.00) 1.50, 2.08 -0.16 0.31 115 0
presence_mean Never 1.64 0.55 0.59 (0.00, 3.00) 1.33, 2.00 -0.28 0.20 672 0
presence_mean Once a year 1.68 0.56 0.55 (0.17, 3.00) 1.33, 2.00 0.04 0.25 58 0
presence_mean Once every couple of years 1.71 0.57 0.59 (0.67, 3.00) 1.33, 2.17 0.20 -0.44 86 0
presence_mean Rarely 1.94 0.65 0.68 (0.00, 3.00) 1.50, 2.33 -0.60 0.63 79 0
Code
plot_fmi_descriptives(data = d_w_items_two_sexes,
                      var = Retreats)

11.3.2 Norms

Code
for (i in unique(d_w_items_two_sexes$Retreats)) { 
  cat("Group: ", i, "\n")
  d_w_items_two_sexes %>% 
    filter(Retreats == i) %>% 
    select(ends_with("_mean")) %>% 
    map(~ knitr::kable(compute_all_norms(., min_score = 0, max_score = 3, by = .1), 
                       digits = 2, col.names = col_names)) %>% 
    print()
}

Group: Never $fmi13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.22 1.00 17.84 0.00
0.1 0.00 -3.02 1.00 19.76 0.00
0.2 0.00 -2.83 1.00 21.68 0.00
0.3 0.01 -2.64 1.00 23.60 0.00
0.4 0.01 -2.45 1.00 25.52 0.01
0.5 0.02 -2.26 1.00 27.44 0.01
0.6 0.03 -2.06 1.00 29.35 0.02
0.7 0.04 -1.87 1.25 31.27 0.03
0.8 0.06 -1.68 1.64 33.19 0.05
0.9 0.07 -1.49 2.02 35.11 0.07
1.0 0.11 -1.30 2.41 37.03 0.10
1.1 0.14 -1.11 2.79 38.94 0.13
1.2 0.17 -0.91 3.17 40.86 0.18
1.3 0.24 -0.72 3.56 42.78 0.24
1.4 0.29 -0.53 3.94 44.70 0.30
1.5 0.36 -0.34 4.32 46.62 0.37
1.6 0.41 -0.15 4.71 48.54 0.44
1.7 0.47 0.05 5.09 50.45 0.52
1.8 0.60 0.24 5.47 52.37 0.59
1.9 0.66 0.43 5.86 54.29 0.67
2.0 0.77 0.62 6.24 56.21 0.73
2.1 0.81 0.81 6.63 58.13 0.79
2.2 0.85 1.00 7.01 60.04 0.84
2.3 0.90 1.20 7.39 61.96 0.88
2.4 0.92 1.39 7.78 63.88 0.92
2.5 0.95 1.58 8.16 65.80 0.94
2.6 0.97 1.77 8.54 67.72 0.96
2.7 0.97 1.96 8.93 69.64 0.98
2.8 0.99 2.16 9.00 71.55 0.98
2.9 0.99 2.35 9.00 73.47 0.99
3.0 1.00 2.54 9.00 75.39 0.99

$presence_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.01 -2.78 1.00 22.23 0.00
0.1 0.01 -2.61 1.00 23.92 0.00
0.2 0.02 -2.44 1.00 25.61 0.01
0.3 0.02 -2.27 1.00 27.30 0.01
0.4 0.03 -2.10 1.00 28.99 0.02
0.5 0.05 -1.93 1.13 30.67 0.03
0.6 0.05 -1.76 1.47 32.36 0.04
0.7 0.08 -1.60 1.81 34.05 0.06
0.8 0.08 -1.43 2.15 35.74 0.08
0.9 0.11 -1.26 2.49 37.43 0.10
1.0 0.16 -1.09 2.82 39.11 0.14
1.1 0.16 -0.92 3.16 40.80 0.18
1.2 0.23 -0.75 3.50 42.49 0.23
1.3 0.23 -0.58 3.84 44.18 0.28
1.4 0.32 -0.41 4.17 45.87 0.34
1.5 0.42 -0.24 4.51 47.55 0.40
1.6 0.42 -0.08 4.85 49.24 0.47
1.7 0.55 0.09 5.19 50.93 0.54
1.8 0.55 0.26 5.52 52.62 0.60
1.9 0.68 0.43 5.86 54.31 0.67
2.0 0.80 0.60 6.20 56.00 0.73
2.1 0.80 0.77 6.54 57.68 0.78
2.2 0.86 0.94 6.87 59.37 0.83
2.3 0.86 1.11 7.21 61.06 0.87
2.4 0.91 1.27 7.55 62.75 0.90
2.5 0.95 1.44 7.89 64.44 0.93
2.6 0.95 1.61 8.22 66.12 0.95
2.7 0.97 1.78 8.56 67.81 0.96
2.8 0.97 1.95 8.90 69.50 0.97
2.9 0.98 2.12 9.00 71.19 0.98
3.0 1.00 2.29 9.00 72.88 0.99

$acceptance13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.01 -2.84 1.00 21.63 0.00
0.1 0.01 -2.67 1.00 23.31 0.00
0.2 0.02 -2.50 1.00 24.98 0.01
0.3 0.02 -2.33 1.00 26.65 0.01
0.4 0.02 -2.17 1.00 28.32 0.02
0.5 0.03 -2.00 1.00 30.00 0.02
0.6 0.05 -1.83 1.33 31.67 0.03
0.7 0.05 -1.67 1.67 33.34 0.05
0.8 0.07 -1.50 2.00 35.02 0.07
0.9 0.10 -1.33 2.34 36.69 0.09
1.0 0.15 -1.16 2.67 38.36 0.12
1.1 0.15 -1.00 3.01 40.04 0.16
1.2 0.20 -0.83 3.34 41.71 0.20
1.3 0.27 -0.66 3.68 43.38 0.25
1.4 0.27 -0.49 4.01 45.05 0.31
1.5 0.35 -0.33 4.35 46.73 0.37
1.6 0.43 -0.16 4.68 48.40 0.44
1.7 0.43 0.01 5.01 50.07 0.50
1.8 0.53 0.17 5.35 51.75 0.57
1.9 0.64 0.34 5.68 53.42 0.63
2.0 0.76 0.51 6.02 55.09 0.69
2.1 0.76 0.68 6.35 56.77 0.75
2.2 0.83 0.84 6.69 58.44 0.80
2.3 0.87 1.01 7.02 60.11 0.84
2.4 0.87 1.18 7.36 61.79 0.88
2.5 0.91 1.35 7.69 63.46 0.91
2.6 0.94 1.51 8.03 65.13 0.93
2.7 0.94 1.68 8.36 66.80 0.95
2.8 0.96 1.85 8.70 68.48 0.97
2.9 0.98 2.02 9.00 70.15 0.98
3.0 1.00 2.18 9.00 71.82 0.99

$fmi14_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.22 1.00 17.84 0.00
0.1 0.00 -3.02 1.00 19.76 0.00
0.2 0.00 -2.83 1.00 21.68 0.00
0.3 0.01 -2.64 1.00 23.60 0.00
0.4 0.01 -2.45 1.00 25.52 0.01
0.5 0.02 -2.26 1.00 27.44 0.01
0.6 0.03 -2.06 1.00 29.35 0.02
0.7 0.04 -1.87 1.25 31.27 0.03
0.8 0.06 -1.68 1.64 33.19 0.05
0.9 0.07 -1.49 2.02 35.11 0.07
1.0 0.11 -1.30 2.41 37.03 0.10
1.1 0.14 -1.11 2.79 38.94 0.13
1.2 0.17 -0.91 3.17 40.86 0.18
1.3 0.24 -0.72 3.56 42.78 0.24
1.4 0.29 -0.53 3.94 44.70 0.30
1.5 0.36 -0.34 4.32 46.62 0.37
1.6 0.41 -0.15 4.71 48.54 0.44
1.7 0.47 0.05 5.09 50.45 0.52
1.8 0.60 0.24 5.47 52.37 0.59
1.9 0.66 0.43 5.86 54.29 0.67
2.0 0.77 0.62 6.24 56.21 0.73
2.1 0.81 0.81 6.63 58.13 0.79
2.2 0.85 1.00 7.01 60.04 0.84
2.3 0.90 1.20 7.39 61.96 0.88
2.4 0.92 1.39 7.78 63.88 0.92
2.5 0.95 1.58 8.16 65.80 0.94
2.6 0.97 1.77 8.54 67.72 0.96
2.7 0.97 1.96 8.93 69.64 0.98
2.8 0.99 2.16 9.00 71.55 0.98
2.9 0.99 2.35 9.00 73.47 0.99
3.0 1.00 2.54 9.00 75.39 0.99

Group: Once every couple of years $fmi13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.67 1.00 13.26 0.00
0.1 0.00 -3.46 1.00 15.41 0.00
0.2 0.00 -3.24 1.00 17.56 0.00
0.3 0.00 -3.03 1.00 19.72 0.00
0.4 0.00 -2.81 1.00 21.87 0.00
0.5 0.00 -2.60 1.00 24.02 0.00
0.6 0.00 -2.38 1.00 26.17 0.01
0.7 0.00 -2.17 1.00 28.32 0.02
0.8 0.00 -1.95 1.09 30.47 0.03
0.9 0.00 -1.74 1.52 32.62 0.04
1.0 0.07 -1.52 1.96 34.78 0.06
1.1 0.09 -1.31 2.39 36.93 0.10
1.2 0.14 -1.09 2.82 39.08 0.14
1.3 0.23 -0.88 3.25 41.23 0.19
1.4 0.28 -0.66 3.68 43.38 0.25
1.5 0.37 -0.45 4.11 45.53 0.33
1.6 0.48 -0.23 4.54 47.68 0.41
1.7 0.51 -0.02 4.97 49.84 0.49
1.8 0.60 0.20 5.40 51.99 0.58
1.9 0.63 0.41 5.83 54.14 0.66
2.0 0.73 0.63 6.26 56.29 0.74
2.1 0.80 0.84 6.69 58.44 0.80
2.2 0.87 1.06 7.12 60.59 0.86
2.3 0.92 1.27 7.55 62.74 0.90
2.4 0.92 1.49 7.98 64.90 0.93
2.5 0.95 1.70 8.41 67.05 0.96
2.6 0.97 1.92 8.84 69.20 0.97
2.7 0.97 2.14 9.00 71.35 0.98
2.8 0.99 2.35 9.00 73.50 0.99
2.9 0.99 2.57 9.00 75.65 0.99
3.0 1.00 2.78 9.00 77.80 1.00

$presence_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -2.91 1.00 20.88 0.00
0.1 0.00 -2.74 1.00 22.58 0.00
0.2 0.00 -2.57 1.00 24.29 0.01
0.3 0.00 -2.40 1.00 26.00 0.01
0.4 0.00 -2.23 1.00 27.70 0.01
0.5 0.00 -2.06 1.00 29.41 0.02
0.6 0.00 -1.89 1.22 31.11 0.03
0.7 0.05 -1.72 1.56 32.82 0.04
0.8 0.05 -1.55 1.90 34.52 0.06
0.9 0.10 -1.38 2.25 36.23 0.08
1.0 0.17 -1.21 2.59 37.94 0.11
1.1 0.17 -1.04 2.93 39.64 0.15
1.2 0.22 -0.87 3.27 41.35 0.19
1.3 0.22 -0.69 3.61 43.05 0.24
1.4 0.29 -0.52 3.95 44.76 0.30
1.5 0.45 -0.35 4.29 46.46 0.36
1.6 0.45 -0.18 4.63 48.17 0.43
1.7 0.56 -0.01 4.97 49.87 0.49
1.8 0.56 0.16 5.32 51.58 0.56
1.9 0.63 0.33 5.66 53.29 0.63
2.0 0.72 0.50 6.00 54.99 0.69
2.1 0.72 0.67 6.34 56.70 0.75
2.2 0.81 0.84 6.68 58.40 0.80
2.3 0.81 1.01 7.02 60.11 0.84
2.4 0.92 1.18 7.36 61.81 0.88
2.5 0.93 1.35 7.70 63.52 0.91
2.6 0.93 1.52 8.04 65.22 0.94
2.7 0.93 1.69 8.39 66.93 0.95
2.8 0.93 1.86 8.73 68.64 0.97
2.9 0.97 2.03 9.00 70.34 0.98
3.0 1.00 2.20 9.00 72.05 0.99

$acceptance13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.30 1.00 17.03 0.00
0.1 0.00 -3.11 1.00 18.92 0.00
0.2 0.00 -2.92 1.00 20.82 0.00
0.3 0.01 -2.73 1.00 22.71 0.00
0.4 0.01 -2.54 1.00 24.60 0.01
0.5 0.01 -2.35 1.00 26.50 0.01
0.6 0.01 -2.16 1.00 28.39 0.02
0.7 0.01 -1.97 1.06 30.29 0.02
0.8 0.01 -1.78 1.44 32.18 0.04
0.9 0.05 -1.59 1.81 34.07 0.06
1.0 0.12 -1.40 2.19 35.97 0.08
1.1 0.12 -1.21 2.57 37.86 0.11
1.2 0.15 -1.02 2.95 39.76 0.15
1.3 0.21 -0.84 3.33 41.65 0.20
1.4 0.21 -0.65 3.71 43.54 0.26
1.5 0.35 -0.46 4.09 45.44 0.32
1.6 0.45 -0.27 4.47 47.33 0.39
1.7 0.45 -0.08 4.85 49.23 0.47
1.8 0.55 0.11 5.22 51.12 0.54
1.9 0.63 0.30 5.60 53.01 0.62
2.0 0.74 0.49 5.98 54.91 0.69
2.1 0.74 0.68 6.36 56.80 0.75
2.2 0.84 0.87 6.74 58.70 0.81
2.3 0.87 1.06 7.12 60.59 0.86
2.4 0.87 1.25 7.50 62.48 0.89
2.5 0.93 1.44 7.88 64.38 0.92
2.6 0.95 1.63 8.25 66.27 0.95
2.7 0.95 1.82 8.63 68.17 0.97
2.8 0.97 2.01 9.00 70.06 0.98
2.9 0.97 2.20 9.00 71.95 0.99
3.0 1.00 2.38 9.00 73.85 0.99

$fmi14_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.67 1.00 13.26 0.00
0.1 0.00 -3.46 1.00 15.41 0.00
0.2 0.00 -3.24 1.00 17.56 0.00
0.3 0.00 -3.03 1.00 19.72 0.00
0.4 0.00 -2.81 1.00 21.87 0.00
0.5 0.00 -2.60 1.00 24.02 0.00
0.6 0.00 -2.38 1.00 26.17 0.01
0.7 0.00 -2.17 1.00 28.32 0.02
0.8 0.00 -1.95 1.09 30.47 0.03
0.9 0.00 -1.74 1.52 32.62 0.04
1.0 0.07 -1.52 1.96 34.78 0.06
1.1 0.09 -1.31 2.39 36.93 0.10
1.2 0.14 -1.09 2.82 39.08 0.14
1.3 0.23 -0.88 3.25 41.23 0.19
1.4 0.28 -0.66 3.68 43.38 0.25
1.5 0.37 -0.45 4.11 45.53 0.33
1.6 0.48 -0.23 4.54 47.68 0.41
1.7 0.51 -0.02 4.97 49.84 0.49
1.8 0.60 0.20 5.40 51.99 0.58
1.9 0.63 0.41 5.83 54.14 0.66
2.0 0.73 0.63 6.26 56.29 0.74
2.1 0.80 0.84 6.69 58.44 0.80
2.2 0.87 1.06 7.12 60.59 0.86
2.3 0.92 1.27 7.55 62.74 0.90
2.4 0.92 1.49 7.98 64.90 0.93
2.5 0.95 1.70 8.41 67.05 0.96
2.6 0.97 1.92 8.84 69.20 0.97
2.7 0.97 2.14 9.00 71.35 0.98
2.8 0.99 2.35 9.00 73.50 0.99
2.9 0.99 2.57 9.00 75.65 0.99
3.0 1.00 2.78 9.00 77.80 1.00

Group: Multiple retreats per year $fmi13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -4.23 1.00 7.71 0.00
0.1 0.00 -4.00 1.00 10.03 0.00
0.2 0.00 -3.76 1.00 12.35 0.00
0.3 0.00 -3.53 1.00 14.67 0.00
0.4 0.00 -3.30 1.00 17.00 0.00
0.5 0.00 -3.07 1.00 19.32 0.00
0.6 0.00 -2.84 1.00 21.64 0.00
0.7 0.00 -2.60 1.00 23.96 0.00
0.8 0.02 -2.37 1.00 26.29 0.01
0.9 0.02 -2.14 1.00 28.61 0.02
1.0 0.03 -1.91 1.19 30.93 0.03
1.1 0.07 -1.67 1.65 33.25 0.05
1.2 0.10 -1.44 2.12 35.58 0.07
1.3 0.13 -1.21 2.58 37.90 0.11
1.4 0.15 -0.98 3.04 40.22 0.16
1.5 0.21 -0.75 3.51 42.54 0.23
1.6 0.27 -0.51 3.97 44.86 0.30
1.7 0.33 -0.28 4.44 47.19 0.39
1.8 0.50 -0.05 4.90 49.51 0.48
1.9 0.58 0.18 5.37 51.83 0.57
2.0 0.76 0.42 5.83 54.15 0.66
2.1 0.77 0.65 6.30 56.48 0.74
2.2 0.80 0.88 6.76 58.80 0.81
2.3 0.90 1.11 7.22 61.12 0.87
2.4 0.91 1.34 7.69 63.44 0.91
2.5 0.93 1.58 8.15 65.77 0.94
2.6 0.95 1.81 8.62 68.09 0.96
2.7 0.97 2.04 9.00 70.41 0.98
2.8 0.99 2.27 9.00 72.73 0.99
2.9 0.99 2.51 9.00 75.06 0.99
3.0 1.00 2.74 9.00 77.38 1.00

$presence_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.72 1.00 12.79 0.00
0.1 0.00 -3.52 1.00 14.80 0.00
0.2 0.00 -3.32 1.00 16.82 0.00
0.3 0.00 -3.12 1.00 18.83 0.00
0.4 0.01 -2.92 1.00 20.85 0.00
0.5 0.01 -2.71 1.00 22.86 0.00
0.6 0.01 -2.51 1.00 24.88 0.01
0.7 0.02 -2.31 1.00 26.89 0.01
0.8 0.02 -2.11 1.00 28.91 0.02
0.9 0.03 -1.91 1.19 30.93 0.03
1.0 0.08 -1.71 1.59 32.94 0.04
1.1 0.08 -1.50 1.99 34.96 0.07
1.2 0.12 -1.30 2.39 36.97 0.10
1.3 0.12 -1.10 2.80 38.99 0.14
1.4 0.17 -0.90 3.20 41.00 0.18
1.5 0.28 -0.70 3.60 43.02 0.24
1.6 0.28 -0.50 4.01 45.03 0.31
1.7 0.38 -0.30 4.41 47.05 0.38
1.8 0.38 -0.09 4.81 49.07 0.46
1.9 0.51 0.11 5.22 51.08 0.54
2.0 0.75 0.31 5.62 53.10 0.62
2.1 0.75 0.51 6.02 55.11 0.70
2.2 0.83 0.71 6.43 57.13 0.76
2.3 0.83 0.91 6.83 59.14 0.82
2.4 0.86 1.12 7.23 61.16 0.87
2.5 0.92 1.32 7.63 63.17 0.91
2.6 0.92 1.52 8.04 65.19 0.94
2.7 0.97 1.72 8.44 67.20 0.96
2.8 0.97 1.92 8.84 69.22 0.97
2.9 0.98 2.12 9.00 71.24 0.98
3.0 1.00 2.33 9.00 73.25 0.99

$acceptance13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.80 1.00 11.97 0.00
0.1 0.00 -3.59 1.00 14.06 0.00
0.2 0.00 -3.38 1.00 16.16 0.00
0.3 0.00 -3.17 1.00 18.25 0.00
0.4 0.00 -2.97 1.00 20.35 0.00
0.5 0.00 -2.76 1.00 22.44 0.00
0.6 0.00 -2.55 1.00 24.54 0.01
0.7 0.00 -2.34 1.00 26.64 0.01
0.8 0.02 -2.13 1.00 28.73 0.02
0.9 0.03 -1.92 1.17 30.83 0.03
1.0 0.09 -1.71 1.58 32.92 0.04
1.1 0.09 -1.50 2.00 35.02 0.07
1.2 0.11 -1.29 2.42 37.11 0.10
1.3 0.18 -1.08 2.84 39.21 0.14
1.4 0.18 -0.87 3.26 41.31 0.19
1.5 0.23 -0.66 3.68 43.40 0.25
1.6 0.32 -0.45 4.10 45.50 0.33
1.7 0.32 -0.24 4.52 47.59 0.40
1.8 0.43 -0.03 4.94 49.69 0.49
1.9 0.60 0.18 5.36 51.78 0.57
2.0 0.75 0.39 5.78 53.88 0.65
2.1 0.75 0.60 6.19 55.97 0.72
2.2 0.84 0.81 6.61 58.07 0.79
2.3 0.88 1.02 7.03 60.17 0.85
2.4 0.88 1.23 7.45 62.26 0.89
2.5 0.90 1.44 7.87 64.36 0.92
2.6 0.93 1.65 8.29 66.45 0.95
2.7 0.93 1.85 8.71 68.55 0.97
2.8 0.99 2.06 9.00 70.64 0.98
2.9 0.99 2.27 9.00 72.74 0.99
3.0 1.00 2.48 9.00 74.84 0.99

$fmi14_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -4.23 1.00 7.71 0.00
0.1 0.00 -4.00 1.00 10.03 0.00
0.2 0.00 -3.76 1.00 12.35 0.00
0.3 0.00 -3.53 1.00 14.67 0.00
0.4 0.00 -3.30 1.00 17.00 0.00
0.5 0.00 -3.07 1.00 19.32 0.00
0.6 0.00 -2.84 1.00 21.64 0.00
0.7 0.00 -2.60 1.00 23.96 0.00
0.8 0.02 -2.37 1.00 26.29 0.01
0.9 0.02 -2.14 1.00 28.61 0.02
1.0 0.03 -1.91 1.19 30.93 0.03
1.1 0.07 -1.67 1.65 33.25 0.05
1.2 0.10 -1.44 2.12 35.58 0.07
1.3 0.13 -1.21 2.58 37.90 0.11
1.4 0.15 -0.98 3.04 40.22 0.16
1.5 0.21 -0.75 3.51 42.54 0.23
1.6 0.27 -0.51 3.97 44.86 0.30
1.7 0.33 -0.28 4.44 47.19 0.39
1.8 0.50 -0.05 4.90 49.51 0.48
1.9 0.58 0.18 5.37 51.83 0.57
2.0 0.76 0.42 5.83 54.15 0.66
2.1 0.77 0.65 6.30 56.48 0.74
2.2 0.80 0.88 6.76 58.80 0.81
2.3 0.90 1.11 7.22 61.12 0.87
2.4 0.91 1.34 7.69 63.44 0.91
2.5 0.93 1.58 8.15 65.77 0.94
2.6 0.95 1.81 8.62 68.09 0.96
2.7 0.97 2.04 9.00 70.41 0.98
2.8 0.99 2.27 9.00 72.73 0.99
2.9 0.99 2.51 9.00 75.06 0.99
3.0 1.00 2.74 9.00 77.38 1.00

Group: Rarely $fmi13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.42 1.00 15.83 0.00
0.1 0.00 -3.24 1.00 17.64 0.00
0.2 0.00 -3.05 1.00 19.45 0.00
0.3 0.01 -2.87 1.00 21.27 0.00
0.4 0.01 -2.69 1.00 23.08 0.00
0.5 0.04 -2.51 1.00 24.89 0.01
0.6 0.04 -2.33 1.00 26.70 0.01
0.7 0.04 -2.15 1.00 28.52 0.02
0.8 0.05 -1.97 1.07 30.33 0.02
0.9 0.05 -1.79 1.43 32.14 0.04
1.0 0.05 -1.60 1.79 33.95 0.05
1.1 0.08 -1.42 2.15 35.77 0.08
1.2 0.08 -1.24 2.52 37.58 0.11
1.3 0.09 -1.06 2.88 39.39 0.14
1.4 0.13 -0.88 3.24 41.21 0.19
1.5 0.24 -0.70 3.60 43.02 0.24
1.6 0.30 -0.52 3.97 44.83 0.30
1.7 0.35 -0.34 4.33 46.64 0.37
1.8 0.44 -0.15 4.69 48.46 0.44
1.9 0.49 0.03 5.05 50.27 0.51
2.0 0.63 0.21 5.42 52.08 0.58
2.1 0.68 0.39 5.78 53.89 0.65
2.2 0.71 0.57 6.14 55.71 0.72
2.3 0.77 0.75 6.50 57.52 0.77
2.4 0.80 0.93 6.87 59.33 0.82
2.5 0.89 1.11 7.23 61.14 0.87
2.6 0.90 1.30 7.59 62.96 0.90
2.7 0.90 1.48 7.95 64.77 0.93
2.8 1.00 1.66 8.32 66.58 0.95
2.9 1.00 1.84 8.68 68.40 0.97
3.0 1.00 2.02 9.00 70.21 0.98

$presence_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.03 -2.85 1.00 21.48 0.00
0.1 0.03 -2.71 1.00 22.95 0.00
0.2 0.04 -2.56 1.00 24.42 0.01
0.3 0.04 -2.41 1.00 25.90 0.01
0.4 0.04 -2.26 1.00 27.37 0.01
0.5 0.04 -2.12 1.00 28.84 0.02
0.6 0.04 -1.97 1.06 30.31 0.02
0.7 0.05 -1.82 1.36 31.79 0.03
0.8 0.05 -1.67 1.65 33.26 0.05
0.9 0.05 -1.53 1.95 34.73 0.06
1.0 0.08 -1.38 2.24 36.20 0.08
1.1 0.08 -1.23 2.54 37.68 0.11
1.2 0.15 -1.08 2.83 39.15 0.14
1.3 0.15 -0.94 3.12 40.62 0.17
1.4 0.19 -0.79 3.42 42.10 0.21
1.5 0.28 -0.64 3.71 43.57 0.26
1.6 0.28 -0.50 4.01 45.04 0.31
1.7 0.35 -0.35 4.30 46.51 0.36
1.8 0.35 -0.20 4.60 47.99 0.42
1.9 0.46 -0.05 4.89 49.46 0.48
2.0 0.58 0.09 5.19 50.93 0.54
2.1 0.58 0.24 5.48 52.40 0.60
2.2 0.68 0.39 5.78 53.88 0.65
2.3 0.68 0.54 6.07 55.35 0.70
2.4 0.76 0.68 6.36 56.82 0.75
2.5 0.82 0.83 6.66 58.30 0.80
2.6 0.82 0.98 6.95 59.77 0.84
2.7 0.87 1.12 7.25 61.24 0.87
2.8 0.87 1.27 7.54 62.71 0.90
2.9 0.91 1.42 7.84 64.19 0.92
3.0 1.00 1.57 8.13 65.66 0.94

$acceptance13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.09 1.00 19.08 0.00
0.1 0.00 -2.93 1.00 20.68 0.00
0.2 0.01 -2.77 1.00 22.28 0.00
0.3 0.03 -2.61 1.00 23.88 0.00
0.4 0.03 -2.45 1.00 25.48 0.01
0.5 0.03 -2.29 1.00 27.08 0.01
0.6 0.05 -2.13 1.00 28.68 0.02
0.7 0.05 -1.97 1.06 30.28 0.02
0.8 0.05 -1.81 1.37 31.87 0.03
0.9 0.05 -1.65 1.69 33.47 0.05
1.0 0.05 -1.49 2.01 35.07 0.07
1.1 0.05 -1.33 2.33 36.67 0.09
1.2 0.09 -1.17 2.65 38.27 0.12
1.3 0.15 -1.01 2.97 39.87 0.16
1.4 0.15 -0.85 3.29 41.47 0.20
1.5 0.24 -0.69 3.61 43.07 0.24
1.6 0.29 -0.53 3.93 44.67 0.30
1.7 0.29 -0.37 4.25 46.27 0.35
1.8 0.41 -0.21 4.57 47.87 0.42
1.9 0.47 -0.05 4.89 49.47 0.48
2.0 0.63 0.11 5.21 51.07 0.54
2.1 0.63 0.27 5.53 52.67 0.61
2.2 0.70 0.43 5.85 54.27 0.67
2.3 0.76 0.59 6.17 55.87 0.72
2.4 0.76 0.75 6.49 57.47 0.77
2.5 0.78 0.91 6.81 59.07 0.82
2.6 0.85 1.07 7.13 60.67 0.86
2.7 0.85 1.23 7.45 62.27 0.89
2.8 0.90 1.39 7.77 63.87 0.92
2.9 0.94 1.55 8.09 65.47 0.94
3.0 1.00 1.71 8.41 67.07 0.96

$fmi14_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.42 1.00 15.83 0.00
0.1 0.00 -3.24 1.00 17.64 0.00
0.2 0.00 -3.05 1.00 19.45 0.00
0.3 0.01 -2.87 1.00 21.27 0.00
0.4 0.01 -2.69 1.00 23.08 0.00
0.5 0.04 -2.51 1.00 24.89 0.01
0.6 0.04 -2.33 1.00 26.70 0.01
0.7 0.04 -2.15 1.00 28.52 0.02
0.8 0.05 -1.97 1.07 30.33 0.02
0.9 0.05 -1.79 1.43 32.14 0.04
1.0 0.05 -1.60 1.79 33.95 0.05
1.1 0.08 -1.42 2.15 35.77 0.08
1.2 0.08 -1.24 2.52 37.58 0.11
1.3 0.09 -1.06 2.88 39.39 0.14
1.4 0.13 -0.88 3.24 41.21 0.19
1.5 0.24 -0.70 3.60 43.02 0.24
1.6 0.30 -0.52 3.97 44.83 0.30
1.7 0.35 -0.34 4.33 46.64 0.37
1.8 0.44 -0.15 4.69 48.46 0.44
1.9 0.49 0.03 5.05 50.27 0.51
2.0 0.63 0.21 5.42 52.08 0.58
2.1 0.68 0.39 5.78 53.89 0.65
2.2 0.71 0.57 6.14 55.71 0.72
2.3 0.77 0.75 6.50 57.52 0.77
2.4 0.80 0.93 6.87 59.33 0.82
2.5 0.89 1.11 7.23 61.14 0.87
2.6 0.90 1.30 7.59 62.96 0.90
2.7 0.90 1.48 7.95 64.77 0.93
2.8 1.00 1.66 8.32 66.58 0.95
2.9 1.00 1.84 8.68 68.40 0.97
3.0 1.00 2.02 9.00 70.21 0.98

Group: Once a year $fmi13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.76 1.00 12.37 0.00
0.1 0.00 -3.54 1.00 14.57 0.00
0.2 0.00 -3.32 1.00 16.77 0.00
0.3 0.00 -3.10 1.00 18.96 0.00
0.4 0.00 -2.88 1.00 21.16 0.00
0.5 0.00 -2.66 1.00 23.36 0.00
0.6 0.02 -2.44 1.00 25.56 0.01
0.7 0.02 -2.22 1.00 27.76 0.01
0.8 0.02 -2.00 1.00 29.96 0.02
0.9 0.02 -1.78 1.43 32.15 0.04
1.0 0.07 -1.56 1.87 34.35 0.06
1.1 0.07 -1.34 2.31 36.55 0.09
1.2 0.10 -1.13 2.75 38.75 0.13
1.3 0.14 -0.91 3.19 40.95 0.18
1.4 0.21 -0.69 3.63 43.15 0.25
1.5 0.38 -0.47 4.07 45.34 0.32
1.6 0.45 -0.25 4.51 47.54 0.40
1.7 0.52 -0.03 4.95 49.74 0.49
1.8 0.66 0.19 5.39 51.94 0.58
1.9 0.67 0.41 5.83 54.14 0.66
2.0 0.79 0.63 6.27 56.33 0.74
2.1 0.83 0.85 6.71 58.53 0.80
2.2 0.83 1.07 7.15 60.73 0.86
2.3 0.90 1.29 7.59 62.93 0.90
2.4 0.91 1.51 8.03 65.13 0.93
2.5 0.95 1.73 8.47 67.33 0.96
2.6 0.97 1.95 8.90 69.52 0.97
2.7 0.98 2.17 9.00 71.72 0.99
2.8 0.98 2.39 9.00 73.92 0.99
2.9 0.98 2.61 9.00 76.12 1.00
3.0 1.00 2.83 9.00 78.32 1.00

$presence_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.04 1.00 19.58 0.00
0.1 0.00 -2.86 1.00 21.39 0.00
0.2 0.02 -2.68 1.00 23.20 0.00
0.3 0.02 -2.50 1.00 25.01 0.01
0.4 0.02 -2.32 1.00 26.82 0.01
0.5 0.02 -2.14 1.00 28.63 0.02
0.6 0.02 -1.96 1.09 30.44 0.03
0.7 0.03 -1.78 1.45 32.25 0.04
0.8 0.03 -1.59 1.81 34.06 0.06
0.9 0.05 -1.41 2.17 35.87 0.08
1.0 0.14 -1.23 2.54 37.68 0.11
1.1 0.14 -1.05 2.90 39.49 0.15
1.2 0.21 -0.87 3.26 41.29 0.19
1.3 0.21 -0.69 3.62 43.10 0.25
1.4 0.33 -0.51 3.98 44.91 0.31
1.5 0.43 -0.33 4.34 46.72 0.37
1.6 0.43 -0.15 4.71 48.53 0.44
1.7 0.57 0.03 5.07 50.34 0.51
1.8 0.57 0.22 5.43 52.15 0.59
1.9 0.67 0.40 5.79 53.96 0.65
2.0 0.79 0.58 6.15 55.77 0.72
2.1 0.79 0.76 6.52 57.58 0.78
2.2 0.86 0.94 6.88 59.39 0.83
2.3 0.86 1.12 7.24 61.20 0.87
2.4 0.88 1.30 7.60 63.01 0.90
2.5 0.95 1.48 7.96 64.82 0.93
2.6 0.95 1.66 8.33 66.63 0.95
2.7 0.97 1.84 8.69 68.44 0.97
2.8 0.97 2.02 9.00 70.25 0.98
2.9 0.98 2.21 9.00 72.06 0.99
3.0 1.00 2.39 9.00 73.87 0.99

$acceptance13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.50 1.00 14.98 0.00
0.1 0.00 -3.30 1.00 17.00 0.00
0.2 0.00 -3.10 1.00 19.02 0.00
0.3 0.00 -2.90 1.00 21.04 0.00
0.4 0.00 -2.69 1.00 23.06 0.00
0.5 0.00 -2.49 1.00 25.08 0.01
0.6 0.00 -2.29 1.00 27.10 0.01
0.7 0.00 -2.09 1.00 29.12 0.02
0.8 0.02 -1.89 1.23 31.14 0.03
0.9 0.03 -1.68 1.63 33.16 0.05
1.0 0.09 -1.48 2.04 35.18 0.07
1.1 0.09 -1.28 2.44 37.20 0.10
1.2 0.10 -1.08 2.84 39.22 0.14
1.3 0.19 -0.88 3.25 41.24 0.19
1.4 0.19 -0.67 3.65 43.26 0.25
1.5 0.31 -0.47 4.05 45.27 0.32
1.6 0.53 -0.27 4.46 47.29 0.39
1.7 0.53 -0.07 4.86 49.31 0.47
1.8 0.57 0.13 5.27 51.33 0.55
1.9 0.69 0.34 5.67 53.35 0.63
2.0 0.79 0.54 6.07 55.37 0.70
2.1 0.79 0.74 6.48 57.39 0.77
2.2 0.86 0.94 6.88 59.41 0.83
2.3 0.91 1.14 7.29 61.43 0.87
2.4 0.91 1.34 7.69 63.45 0.91
2.5 0.91 1.55 8.09 65.47 0.94
2.6 0.93 1.75 8.50 67.49 0.96
2.7 0.93 1.95 8.90 69.51 0.97
2.8 0.93 2.15 9.00 71.53 0.98
2.9 0.98 2.35 9.00 73.55 0.99
3.0 1.00 2.56 9.00 75.57 0.99

$fmi14_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.76 1.00 12.37 0.00
0.1 0.00 -3.54 1.00 14.57 0.00
0.2 0.00 -3.32 1.00 16.77 0.00
0.3 0.00 -3.10 1.00 18.96 0.00
0.4 0.00 -2.88 1.00 21.16 0.00
0.5 0.00 -2.66 1.00 23.36 0.00
0.6 0.02 -2.44 1.00 25.56 0.01
0.7 0.02 -2.22 1.00 27.76 0.01
0.8 0.02 -2.00 1.00 29.96 0.02
0.9 0.02 -1.78 1.43 32.15 0.04
1.0 0.07 -1.56 1.87 34.35 0.06
1.1 0.07 -1.34 2.31 36.55 0.09
1.2 0.10 -1.13 2.75 38.75 0.13
1.3 0.14 -0.91 3.19 40.95 0.18
1.4 0.21 -0.69 3.63 43.15 0.25
1.5 0.38 -0.47 4.07 45.34 0.32
1.6 0.45 -0.25 4.51 47.54 0.40
1.7 0.52 -0.03 4.95 49.74 0.49
1.8 0.66 0.19 5.39 51.94 0.58
1.9 0.67 0.41 5.83 54.14 0.66
2.0 0.79 0.63 6.27 56.33 0.74
2.1 0.83 0.85 6.71 58.53 0.80
2.2 0.83 1.07 7.15 60.73 0.86
2.3 0.90 1.29 7.59 62.93 0.90
2.4 0.91 1.51 8.03 65.13 0.93
2.5 0.95 1.73 8.47 67.33 0.96
2.6 0.97 1.95 8.90 69.52 0.97
2.7 0.98 2.17 9.00 71.72 0.99
2.8 0.98 2.39 9.00 73.92 0.99
2.9 0.98 2.61 9.00 76.12 1.00
3.0 1.00 2.83 9.00 78.32 1.00

11.4 Split by Vipassana continuously

11.4.1 Stats

Code
describe_fmi_stats(data = d_w_items_two_sexes,
                   var = Vip_regel)
Variable Vip_regel Mean Mean_01 SD Range Quartiles Skewness Kurtosis n n_Missing
acceptance13_mean ja 1.71 0.57 0.64 (0.29, 3.00) 1.43, 2.14 -0.02 0.04 33 0
acceptance13_mean nicht 1.73 0.58 0.58 (0.00, 3.00) 1.43, 2.00 -0.22 0.28 977 0
fmi13_mean ja 1.67 0.56 0.59 (0.43, 2.79) 1.36, 2.14 -0.21 0.02 33 0
fmi13_mean nicht 1.72 0.57 0.51 (0.21, 3.00) 1.36, 2.00 -0.14 0.16 977 0
fmi14_mean ja 1.67 0.56 0.59 (0.43, 2.79) 1.36, 2.14 -0.21 0.02 33 0
fmi14_mean nicht 1.72 0.57 0.51 (0.21, 3.00) 1.36, 2.00 -0.14 0.16 977 0
presence_mean ja 1.66 0.55 0.77 (0.00, 3.00) 1.33, 2.17 -0.37 -0.18 33 0
presence_mean nicht 1.70 0.57 0.59 (0.00, 3.00) 1.33, 2.00 -0.23 0.19 977 0
Code
plot_fmi_descriptives(data = d_w_items_two_sexes,
                      var = Vip_regel)

11.4.2 Norms

Code
for (i in unique(d_w_items_two_sexes$Vip_regel)) { 
  cat("Group: ", i, "\n")
  d_w_items_two_sexes %>% 
    filter(Vip_regel == i) %>% 
    select(ends_with("_mean")) %>% 
    map(~ knitr::kable(compute_all_norms(., min_score = 0, max_score = 3, by = .1), 
                       digits = 2, col.names = col_names)) %>% 
    print()
}

Group: nicht $fmi13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.38 1.00 16.16 0.00
0.1 0.00 -3.19 1.00 18.13 0.00
0.2 0.00 -2.99 1.00 20.10 0.00
0.3 0.01 -2.79 1.00 22.07 0.00
0.4 0.01 -2.60 1.00 24.05 0.00
0.5 0.01 -2.40 1.00 26.02 0.01
0.6 0.02 -2.20 1.00 27.99 0.01
0.7 0.03 -2.00 1.00 29.97 0.02
0.8 0.04 -1.81 1.39 31.94 0.04
0.9 0.05 -1.61 1.78 33.91 0.05
1.0 0.09 -1.41 2.18 35.89 0.08
1.1 0.12 -1.21 2.57 37.86 0.11
1.2 0.15 -1.02 2.97 39.83 0.15
1.3 0.21 -0.82 3.36 41.80 0.21
1.4 0.25 -0.62 3.76 43.78 0.27
1.5 0.34 -0.42 4.15 45.75 0.34
1.6 0.39 -0.23 4.54 47.72 0.41
1.7 0.45 -0.03 4.94 49.70 0.49
1.8 0.58 0.17 5.33 51.67 0.57
1.9 0.63 0.36 5.73 53.64 0.64
2.0 0.76 0.56 6.12 55.62 0.71
2.1 0.80 0.76 6.52 57.59 0.78
2.2 0.83 0.96 6.91 59.56 0.83
2.3 0.89 1.15 7.31 61.53 0.88
2.4 0.91 1.35 7.70 63.51 0.91
2.5 0.95 1.55 8.10 65.48 0.94
2.6 0.96 1.75 8.49 67.45 0.96
2.7 0.97 1.94 8.89 69.43 0.97
2.8 0.99 2.14 9.00 71.40 0.98
2.9 0.99 2.34 9.00 73.37 0.99
3.0 1.00 2.53 9.00 75.35 0.99

$presence_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.01 -2.90 1.00 21.05 0.00
0.1 0.01 -2.73 1.00 22.75 0.00
0.2 0.01 -2.55 1.00 24.45 0.01
0.3 0.01 -2.38 1.00 26.16 0.01
0.4 0.02 -2.21 1.00 27.86 0.01
0.5 0.04 -2.04 1.00 29.56 0.02
0.6 0.04 -1.87 1.25 31.27 0.03
0.7 0.06 -1.70 1.59 32.97 0.04
0.8 0.06 -1.53 1.94 34.68 0.06
0.9 0.09 -1.36 2.28 36.38 0.09
1.0 0.14 -1.19 2.62 38.08 0.12
1.1 0.14 -1.02 2.96 39.79 0.15
1.2 0.21 -0.85 3.30 41.49 0.20
1.3 0.21 -0.68 3.64 43.19 0.25
1.4 0.29 -0.51 3.98 44.90 0.30
1.5 0.39 -0.34 4.32 46.60 0.37
1.6 0.39 -0.17 4.66 48.31 0.43
1.7 0.51 0.00 5.00 50.01 0.50
1.8 0.51 0.17 5.34 51.71 0.57
1.9 0.64 0.34 5.68 53.42 0.63
2.0 0.77 0.51 6.02 55.12 0.70
2.1 0.77 0.68 6.36 56.82 0.75
2.2 0.84 0.85 6.71 58.53 0.80
2.3 0.84 1.02 7.05 60.23 0.85
2.4 0.89 1.19 7.39 61.94 0.88
2.5 0.94 1.36 7.73 63.64 0.91
2.6 0.94 1.53 8.07 65.34 0.94
2.7 0.96 1.70 8.41 67.05 0.96
2.8 0.96 1.88 8.75 68.75 0.97
2.9 0.98 2.05 9.00 70.45 0.98
3.0 1.00 2.22 9.00 72.16 0.99

$acceptance13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.01 -3.00 1.00 19.98 0.00
0.1 0.01 -2.83 1.00 21.71 0.00
0.2 0.01 -2.66 1.00 23.44 0.00
0.3 0.02 -2.48 1.00 25.17 0.01
0.4 0.02 -2.31 1.00 26.90 0.01
0.5 0.03 -2.14 1.00 28.63 0.02
0.6 0.03 -1.96 1.07 30.36 0.02
0.7 0.03 -1.79 1.42 32.09 0.04
0.8 0.05 -1.62 1.76 33.82 0.05
0.9 0.08 -1.44 2.11 35.55 0.07
1.0 0.13 -1.27 2.46 37.28 0.10
1.1 0.13 -1.10 2.80 39.02 0.14
1.2 0.17 -0.93 3.15 40.75 0.18
1.3 0.24 -0.75 3.50 42.48 0.23
1.4 0.24 -0.58 3.84 44.21 0.28
1.5 0.33 -0.41 4.19 45.94 0.34
1.6 0.42 -0.23 4.53 47.67 0.41
1.7 0.42 -0.06 4.88 49.40 0.48
1.8 0.51 0.11 5.23 51.13 0.55
1.9 0.63 0.29 5.57 52.86 0.61
2.0 0.75 0.46 5.92 54.59 0.68
2.1 0.75 0.63 6.26 56.32 0.74
2.2 0.82 0.81 6.61 58.06 0.79
2.3 0.87 0.98 6.96 59.79 0.84
2.4 0.87 1.15 7.30 61.52 0.88
2.5 0.90 1.32 7.65 63.25 0.91
2.6 0.94 1.50 8.00 64.98 0.93
2.7 0.94 1.67 8.34 66.71 0.95
2.8 0.96 1.84 8.69 68.44 0.97
2.9 0.98 2.02 9.00 70.17 0.98
3.0 1.00 2.19 9.00 71.90 0.99

$fmi14_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.38 1.00 16.16 0.00
0.1 0.00 -3.19 1.00 18.13 0.00
0.2 0.00 -2.99 1.00 20.10 0.00
0.3 0.01 -2.79 1.00 22.07 0.00
0.4 0.01 -2.60 1.00 24.05 0.00
0.5 0.01 -2.40 1.00 26.02 0.01
0.6 0.02 -2.20 1.00 27.99 0.01
0.7 0.03 -2.00 1.00 29.97 0.02
0.8 0.04 -1.81 1.39 31.94 0.04
0.9 0.05 -1.61 1.78 33.91 0.05
1.0 0.09 -1.41 2.18 35.89 0.08
1.1 0.12 -1.21 2.57 37.86 0.11
1.2 0.15 -1.02 2.97 39.83 0.15
1.3 0.21 -0.82 3.36 41.80 0.21
1.4 0.25 -0.62 3.76 43.78 0.27
1.5 0.34 -0.42 4.15 45.75 0.34
1.6 0.39 -0.23 4.54 47.72 0.41
1.7 0.45 -0.03 4.94 49.70 0.49
1.8 0.58 0.17 5.33 51.67 0.57
1.9 0.63 0.36 5.73 53.64 0.64
2.0 0.76 0.56 6.12 55.62 0.71
2.1 0.80 0.76 6.52 57.59 0.78
2.2 0.83 0.96 6.91 59.56 0.83
2.3 0.89 1.15 7.31 61.53 0.88
2.4 0.91 1.35 7.70 63.51 0.91
2.5 0.95 1.55 8.10 65.48 0.94
2.6 0.96 1.75 8.49 67.45 0.96
2.7 0.97 1.94 8.89 69.43 0.97
2.8 0.99 2.14 9.00 71.40 0.98
2.9 0.99 2.34 9.00 73.37 0.99
3.0 1.00 2.53 9.00 75.35 0.99

Group: ja $fmi13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -2.82 1.00 21.78 0.00
0.1 0.00 -2.65 1.00 23.47 0.00
0.2 0.00 -2.48 1.00 25.16 0.01
0.3 0.00 -2.31 1.00 26.85 0.01
0.4 0.00 -2.15 1.00 28.55 0.02
0.5 0.06 -1.98 1.05 30.24 0.02
0.6 0.09 -1.81 1.39 31.93 0.04
0.7 0.09 -1.64 1.72 33.62 0.05
0.8 0.09 -1.47 2.06 35.31 0.07
0.9 0.09 -1.30 2.40 37.00 0.10
1.0 0.12 -1.13 2.74 38.69 0.13
1.1 0.12 -0.96 3.08 40.38 0.17
1.2 0.12 -0.79 3.41 42.07 0.21
1.3 0.21 -0.62 3.75 43.76 0.27
1.4 0.27 -0.45 4.09 45.45 0.32
1.5 0.39 -0.29 4.43 47.15 0.39
1.6 0.52 -0.12 4.77 48.84 0.45
1.7 0.52 0.05 5.11 50.53 0.52
1.8 0.70 0.22 5.44 52.22 0.59
1.9 0.73 0.39 5.78 53.91 0.65
2.0 0.73 0.56 6.12 55.60 0.71
2.1 0.73 0.73 6.46 57.29 0.77
2.2 0.79 0.90 6.80 58.98 0.82
2.3 0.85 1.07 7.13 60.67 0.86
2.4 0.88 1.24 7.47 62.36 0.89
2.5 0.94 1.41 7.81 64.05 0.92
2.6 0.94 1.57 8.15 65.75 0.94
2.7 0.94 1.74 8.49 67.44 0.96
2.8 1.00 1.91 8.83 69.13 0.97
2.9 1.00 2.08 9.00 70.82 0.98
3.0 1.00 2.25 9.00 72.51 0.99

$presence_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.03 -2.16 1.00 28.37 0.02
0.1 0.03 -2.03 1.00 29.68 0.02
0.2 0.09 -1.90 1.20 30.98 0.03
0.3 0.09 -1.77 1.46 32.29 0.04
0.4 0.09 -1.64 1.72 33.59 0.05
0.5 0.09 -1.51 1.98 34.90 0.07
0.6 0.09 -1.38 2.24 36.21 0.08
0.7 0.12 -1.25 2.50 37.51 0.11
0.8 0.12 -1.12 2.76 38.82 0.13
0.9 0.15 -0.99 3.02 40.12 0.16
1.0 0.21 -0.86 3.29 41.43 0.20
1.1 0.21 -0.73 3.55 42.73 0.23
1.2 0.24 -0.60 3.81 44.04 0.28
1.3 0.24 -0.47 4.07 45.34 0.32
1.4 0.30 -0.33 4.33 46.65 0.37
1.5 0.45 -0.20 4.59 47.96 0.42
1.6 0.45 -0.07 4.85 49.26 0.47
1.7 0.58 0.06 5.11 50.57 0.52
1.8 0.58 0.19 5.37 51.87 0.57
1.9 0.67 0.32 5.64 53.18 0.62
2.0 0.67 0.45 5.90 54.48 0.67
2.1 0.67 0.58 6.16 55.79 0.72
2.2 0.76 0.71 6.42 57.09 0.76
2.3 0.76 0.84 6.68 58.40 0.80
2.4 0.82 0.97 6.94 59.71 0.83
2.5 0.91 1.10 7.20 61.01 0.86
2.6 0.91 1.23 7.46 62.32 0.89
2.7 0.91 1.36 7.72 63.62 0.91
2.8 0.91 1.49 7.99 64.93 0.93
2.9 0.97 1.62 8.25 66.23 0.95
3.0 1.00 1.75 8.51 67.54 0.96

$acceptance13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -2.69 1.00 23.09 0.00
0.1 0.00 -2.53 1.00 24.66 0.01
0.2 0.00 -2.38 1.00 26.23 0.01
0.3 0.03 -2.22 1.00 27.81 0.01
0.4 0.03 -2.06 1.00 29.38 0.02
0.5 0.03 -1.90 1.19 30.96 0.03
0.6 0.06 -1.75 1.51 32.53 0.04
0.7 0.06 -1.59 1.82 34.10 0.06
0.8 0.09 -1.43 2.14 35.68 0.08
0.9 0.12 -1.27 2.45 37.25 0.10
1.0 0.12 -1.12 2.77 38.83 0.13
1.1 0.12 -0.96 3.08 40.40 0.17
1.2 0.18 -0.80 3.39 41.97 0.21
1.3 0.24 -0.65 3.71 43.55 0.26
1.4 0.24 -0.49 4.02 45.12 0.31
1.5 0.33 -0.33 4.34 46.70 0.37
1.6 0.45 -0.17 4.65 48.27 0.43
1.7 0.45 -0.02 4.97 49.84 0.49
1.8 0.64 0.14 5.28 51.42 0.56
1.9 0.67 0.30 5.60 52.99 0.62
2.0 0.73 0.46 5.91 54.57 0.68
2.1 0.73 0.61 6.23 56.14 0.73
2.2 0.82 0.77 6.54 57.71 0.78
2.3 0.85 0.93 6.86 59.29 0.82
2.4 0.85 1.09 7.17 60.86 0.86
2.5 0.85 1.24 7.49 62.43 0.89
2.6 0.91 1.40 7.80 64.01 0.92
2.7 0.91 1.56 8.12 65.58 0.94
2.8 0.94 1.72 8.43 67.16 0.96
2.9 0.97 1.87 8.75 68.73 0.97
3.0 1.00 2.03 9.00 70.30 0.98

$fmi14_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -2.82 1.00 21.78 0.00
0.1 0.00 -2.65 1.00 23.47 0.00
0.2 0.00 -2.48 1.00 25.16 0.01
0.3 0.00 -2.31 1.00 26.85 0.01
0.4 0.00 -2.15 1.00 28.55 0.02
0.5 0.06 -1.98 1.05 30.24 0.02
0.6 0.09 -1.81 1.39 31.93 0.04
0.7 0.09 -1.64 1.72 33.62 0.05
0.8 0.09 -1.47 2.06 35.31 0.07
0.9 0.09 -1.30 2.40 37.00 0.10
1.0 0.12 -1.13 2.74 38.69 0.13
1.1 0.12 -0.96 3.08 40.38 0.17
1.2 0.12 -0.79 3.41 42.07 0.21
1.3 0.21 -0.62 3.75 43.76 0.27
1.4 0.27 -0.45 4.09 45.45 0.32
1.5 0.39 -0.29 4.43 47.15 0.39
1.6 0.52 -0.12 4.77 48.84 0.45
1.7 0.52 0.05 5.11 50.53 0.52
1.8 0.70 0.22 5.44 52.22 0.59
1.9 0.73 0.39 5.78 53.91 0.65
2.0 0.73 0.56 6.12 55.60 0.71
2.1 0.73 0.73 6.46 57.29 0.77
2.2 0.79 0.90 6.80 58.98 0.82
2.3 0.85 1.07 7.13 60.67 0.86
2.4 0.88 1.24 7.47 62.36 0.89
2.5 0.94 1.41 7.81 64.05 0.92
2.6 0.94 1.57 8.15 65.75 0.94
2.7 0.94 1.74 8.49 67.44 0.96
2.8 1.00 1.91 8.83 69.13 0.97
2.9 1.00 2.08 9.00 70.82 0.98
3.0 1.00 2.25 9.00 72.51 0.99

11.5 Split by Age

11.5.1 Stats

Median age in sample?

Code
d_w_items_two_sexes$Alter %>% median()
[1] 49
Code
d_w_items_two_sexes <-
  d_w_items_two_sexes %>%
  mutate(age_below_md = if_else(Alter < median(Alter), "young", "old"))
Code
describe_fmi_stats(data = d_w_items_two_sexes,
                   var = age_below_md)
Variable age_below_md Mean Mean_01 SD Range Quartiles Skewness Kurtosis n n_Missing
acceptance13_mean old 1.76 0.59 0.59 (0.00, 3.00) 1.43, 2.14 -0.38 0.41 526 0
acceptance13_mean young 1.70 0.57 0.56 (0.00, 3.00) 1.29, 2.00 -0.03 0.17 484 0
fmi13_mean old 1.74 0.58 0.51 (0.21, 3.00) 1.43, 2.07 -0.29 0.25 526 0
fmi13_mean young 1.68 0.56 0.50 (0.21, 3.00) 1.36, 2.00 6.54e-03 0.13 484 0
fmi14_mean old 1.74 0.58 0.51 (0.21, 3.00) 1.43, 2.07 -0.29 0.25 526 0
fmi14_mean young 1.68 0.56 0.50 (0.21, 3.00) 1.36, 2.00 6.54e-03 0.13 484 0
presence_mean old 1.71 0.57 0.58 (0.00, 3.00) 1.33, 2.00 -0.38 0.39 526 0
presence_mean young 1.68 0.56 0.61 (0.00, 3.00) 1.33, 2.00 -0.09 0.05 484 0
Code
plot_fmi_descriptives(data = d_w_items_two_sexes,
                      var = age_below_md) +
  labs(caption = "Age is splitted at the median FMI score.")

11.5.2 Norms

Code
for (i in unique(d_w_items_two_sexes$age_below_md)) { 
  cat("Group: ", i, "\n")
  d_w_items_two_sexes %>% 
    filter(age_below_md == i) %>% 
    select(ends_with("_mean")) %>% 
    map(~ knitr::kable(compute_all_norms(., min_score = 0, max_score = 3, by = .1), 
                       digits = 2, col.names = col_names)) %>% 
    print()
}

Group: young $fmi13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.34 1.00 16.60 0.00
0.1 0.00 -3.14 1.00 18.59 0.00
0.2 0.00 -2.94 1.00 20.58 0.00
0.3 0.01 -2.74 1.00 22.56 0.00
0.4 0.01 -2.55 1.00 24.55 0.01
0.5 0.01 -2.35 1.00 26.53 0.01
0.6 0.02 -2.15 1.00 28.52 0.02
0.7 0.02 -1.95 1.10 30.50 0.03
0.8 0.04 -1.75 1.50 32.49 0.04
0.9 0.06 -1.55 1.89 34.47 0.06
1.0 0.10 -1.35 2.29 36.46 0.09
1.1 0.12 -1.16 2.69 38.45 0.12
1.2 0.16 -0.96 3.09 40.43 0.17
1.3 0.22 -0.76 3.48 42.42 0.22
1.4 0.27 -0.56 3.88 44.40 0.29
1.5 0.39 -0.36 4.28 46.39 0.36
1.6 0.45 -0.16 4.67 48.37 0.44
1.7 0.50 0.04 5.07 50.36 0.51
1.8 0.62 0.23 5.47 52.34 0.59
1.9 0.66 0.43 5.87 54.33 0.67
2.0 0.78 0.63 6.26 56.31 0.74
2.1 0.82 0.83 6.66 58.30 0.80
2.2 0.86 1.03 7.06 60.29 0.85
2.3 0.90 1.23 7.45 62.27 0.89
2.4 0.91 1.43 7.85 64.26 0.92
2.5 0.95 1.62 8.25 66.24 0.95
2.6 0.96 1.82 8.65 68.23 0.97
2.7 0.96 2.02 9.00 70.21 0.98
2.8 0.99 2.22 9.00 72.20 0.99
2.9 0.99 2.42 9.00 74.18 0.99
3.0 1.00 2.62 9.00 76.17 1.00

$presence_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.01 -2.78 1.00 22.25 0.00
0.1 0.01 -2.61 1.00 23.90 0.00
0.2 0.02 -2.44 1.00 25.55 0.01
0.3 0.02 -2.28 1.00 27.21 0.01
0.4 0.02 -2.11 1.00 28.86 0.02
0.5 0.04 -1.95 1.10 30.51 0.03
0.6 0.04 -1.78 1.43 32.16 0.04
0.7 0.07 -1.62 1.76 33.81 0.05
0.8 0.07 -1.45 2.09 35.47 0.07
0.9 0.10 -1.29 2.42 37.12 0.10
1.0 0.15 -1.12 2.75 38.77 0.13
1.1 0.15 -0.96 3.08 40.42 0.17
1.2 0.23 -0.79 3.41 42.07 0.21
1.3 0.23 -0.63 3.75 43.73 0.27
1.4 0.31 -0.46 4.08 45.38 0.32
1.5 0.43 -0.30 4.41 47.03 0.38
1.6 0.43 -0.13 4.74 48.68 0.45
1.7 0.55 0.03 5.07 50.33 0.51
1.8 0.55 0.20 5.40 51.99 0.58
1.9 0.66 0.36 5.73 53.64 0.64
2.0 0.77 0.53 6.06 55.29 0.70
2.1 0.77 0.69 6.39 56.94 0.76
2.2 0.84 0.86 6.72 58.59 0.80
2.3 0.84 1.02 7.05 60.25 0.85
2.4 0.88 1.19 7.38 61.90 0.88
2.5 0.92 1.36 7.71 63.55 0.91
2.6 0.92 1.52 8.04 65.20 0.94
2.7 0.95 1.69 8.37 66.85 0.95
2.8 0.95 1.85 8.70 68.51 0.97
2.9 0.97 2.02 9.00 70.16 0.98
3.0 1.00 2.18 9.00 71.81 0.99

$acceptance13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.03 1.00 19.71 0.00
0.1 0.00 -2.85 1.00 21.49 0.00
0.2 0.01 -2.67 1.00 23.27 0.00
0.3 0.01 -2.49 1.00 25.05 0.01
0.4 0.01 -2.32 1.00 26.83 0.01
0.5 0.02 -2.14 1.00 28.61 0.02
0.6 0.03 -1.96 1.08 30.39 0.02
0.7 0.03 -1.78 1.43 32.17 0.04
0.8 0.04 -1.61 1.79 33.95 0.05
0.9 0.08 -1.43 2.15 35.73 0.08
1.0 0.13 -1.25 2.50 37.51 0.11
1.1 0.13 -1.07 2.86 39.29 0.14
1.2 0.18 -0.89 3.21 41.06 0.19
1.3 0.26 -0.72 3.57 42.84 0.24
1.4 0.26 -0.54 3.92 44.62 0.30
1.5 0.35 -0.36 4.28 46.40 0.36
1.6 0.46 -0.18 4.64 48.18 0.43
1.7 0.46 0.00 4.99 49.96 0.50
1.8 0.55 0.17 5.35 51.74 0.57
1.9 0.66 0.35 5.70 53.52 0.64
2.0 0.78 0.53 6.06 55.30 0.70
2.1 0.78 0.71 6.42 57.08 0.76
2.2 0.84 0.89 6.77 58.86 0.81
2.3 0.89 1.06 7.13 60.64 0.86
2.4 0.89 1.24 7.48 62.42 0.89
2.5 0.91 1.42 7.84 64.20 0.92
2.6 0.94 1.60 8.19 65.97 0.94
2.7 0.94 1.78 8.55 67.75 0.96
2.8 0.96 1.95 8.91 69.53 0.97
2.9 0.98 2.13 9.00 71.31 0.98
3.0 1.00 2.31 9.00 73.09 0.99

$fmi14_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.34 1.00 16.60 0.00
0.1 0.00 -3.14 1.00 18.59 0.00
0.2 0.00 -2.94 1.00 20.58 0.00
0.3 0.01 -2.74 1.00 22.56 0.00
0.4 0.01 -2.55 1.00 24.55 0.01
0.5 0.01 -2.35 1.00 26.53 0.01
0.6 0.02 -2.15 1.00 28.52 0.02
0.7 0.02 -1.95 1.10 30.50 0.03
0.8 0.04 -1.75 1.50 32.49 0.04
0.9 0.06 -1.55 1.89 34.47 0.06
1.0 0.10 -1.35 2.29 36.46 0.09
1.1 0.12 -1.16 2.69 38.45 0.12
1.2 0.16 -0.96 3.09 40.43 0.17
1.3 0.22 -0.76 3.48 42.42 0.22
1.4 0.27 -0.56 3.88 44.40 0.29
1.5 0.39 -0.36 4.28 46.39 0.36
1.6 0.45 -0.16 4.67 48.37 0.44
1.7 0.50 0.04 5.07 50.36 0.51
1.8 0.62 0.23 5.47 52.34 0.59
1.9 0.66 0.43 5.87 54.33 0.67
2.0 0.78 0.63 6.26 56.31 0.74
2.1 0.82 0.83 6.66 58.30 0.80
2.2 0.86 1.03 7.06 60.29 0.85
2.3 0.90 1.23 7.45 62.27 0.89
2.4 0.91 1.43 7.85 64.26 0.92
2.5 0.95 1.62 8.25 66.24 0.95
2.6 0.96 1.82 8.65 68.23 0.97
2.7 0.96 2.02 9.00 70.21 0.98
2.8 0.99 2.22 9.00 72.20 0.99
2.9 0.99 2.42 9.00 74.18 0.99
3.0 1.00 2.62 9.00 76.17 1.00

Group: old $fmi13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.39 1.00 16.06 0.00
0.1 0.00 -3.20 1.00 18.01 0.00
0.2 0.00 -3.00 1.00 19.96 0.00
0.3 0.01 -2.81 1.00 21.90 0.00
0.4 0.01 -2.61 1.00 23.85 0.00
0.5 0.02 -2.42 1.00 25.80 0.01
0.6 0.03 -2.23 1.00 27.74 0.01
0.7 0.03 -2.03 1.00 29.69 0.02
0.8 0.05 -1.84 1.33 31.64 0.03
0.9 0.05 -1.64 1.72 33.58 0.05
1.0 0.09 -1.45 2.11 35.53 0.07
1.1 0.12 -1.25 2.50 37.48 0.11
1.2 0.14 -1.06 2.88 39.42 0.15
1.3 0.20 -0.86 3.27 41.37 0.19
1.4 0.23 -0.67 3.66 43.32 0.25
1.5 0.29 -0.47 4.05 45.27 0.32
1.6 0.34 -0.28 4.44 47.21 0.39
1.7 0.41 -0.08 4.83 49.16 0.47
1.8 0.54 0.11 5.22 51.11 0.54
1.9 0.61 0.31 5.61 53.05 0.62
2.0 0.74 0.50 6.00 55.00 0.69
2.1 0.77 0.69 6.39 56.95 0.76
2.2 0.81 0.89 6.78 58.89 0.81
2.3 0.89 1.08 7.17 60.84 0.86
2.4 0.90 1.28 7.56 62.79 0.90
2.5 0.94 1.47 7.95 64.73 0.93
2.6 0.96 1.67 8.34 66.68 0.95
2.7 0.97 1.86 8.73 68.63 0.97
2.8 0.99 2.06 9.00 70.57 0.98
2.9 0.99 2.25 9.00 72.52 0.99
3.0 1.00 2.45 9.00 74.47 0.99

$presence_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.01 -2.95 1.00 20.53 0.00
0.1 0.01 -2.78 1.00 22.25 0.00
0.2 0.01 -2.60 1.00 23.97 0.00
0.3 0.01 -2.43 1.00 25.69 0.01
0.4 0.03 -2.26 1.00 27.41 0.01
0.5 0.05 -2.09 1.00 29.12 0.02
0.6 0.05 -1.92 1.17 30.84 0.03
0.7 0.06 -1.74 1.51 32.56 0.04
0.8 0.06 -1.57 1.86 34.28 0.06
0.9 0.09 -1.40 2.20 36.00 0.08
1.0 0.14 -1.23 2.54 37.72 0.11
1.1 0.14 -1.06 2.89 39.43 0.15
1.2 0.19 -0.88 3.23 41.15 0.19
1.3 0.19 -0.71 3.57 42.87 0.24
1.4 0.28 -0.54 3.92 44.59 0.29
1.5 0.37 -0.37 4.26 46.31 0.36
1.6 0.37 -0.20 4.61 48.03 0.42
1.7 0.48 -0.03 4.95 49.75 0.49
1.8 0.48 0.15 5.29 51.46 0.56
1.9 0.61 0.32 5.64 53.18 0.62
2.0 0.77 0.49 5.98 54.90 0.69
2.1 0.77 0.66 6.32 56.62 0.75
2.2 0.84 0.83 6.67 58.34 0.80
2.3 0.84 1.01 7.01 60.06 0.84
2.4 0.90 1.18 7.35 61.77 0.88
2.5 0.94 1.35 7.70 63.49 0.91
2.6 0.94 1.52 8.04 65.21 0.94
2.7 0.96 1.69 8.39 66.93 0.95
2.8 0.96 1.86 8.73 68.65 0.97
2.9 0.98 2.04 9.00 70.37 0.98
3.0 1.00 2.21 9.00 72.09 0.99

$acceptance13_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.01 -2.97 1.00 20.32 0.00
0.1 0.01 -2.80 1.00 22.00 0.00
0.2 0.02 -2.63 1.00 23.69 0.00
0.3 0.02 -2.46 1.00 25.37 0.01
0.4 0.02 -2.29 1.00 27.05 0.01
0.5 0.03 -2.13 1.00 28.74 0.02
0.6 0.04 -1.96 1.08 30.42 0.03
0.7 0.04 -1.79 1.42 32.11 0.04
0.8 0.06 -1.62 1.76 33.79 0.05
0.9 0.08 -1.45 2.09 35.47 0.07
1.0 0.12 -1.28 2.43 37.16 0.10
1.1 0.12 -1.12 2.77 38.84 0.13
1.2 0.16 -0.95 3.10 40.52 0.17
1.3 0.23 -0.78 3.44 42.21 0.22
1.4 0.23 -0.61 3.78 43.89 0.27
1.5 0.30 -0.44 4.11 45.57 0.33
1.6 0.37 -0.27 4.45 47.26 0.39
1.7 0.37 -0.11 4.79 48.94 0.46
1.8 0.48 0.06 5.12 50.62 0.52
1.9 0.60 0.23 5.46 52.31 0.59
2.0 0.73 0.40 5.80 53.99 0.66
2.1 0.73 0.57 6.14 55.68 0.71
2.2 0.81 0.74 6.47 57.36 0.77
2.3 0.85 0.90 6.81 59.04 0.82
2.4 0.85 1.07 7.15 60.73 0.86
2.5 0.89 1.24 7.48 62.41 0.89
2.6 0.94 1.41 7.82 64.09 0.92
2.7 0.94 1.58 8.16 65.78 0.94
2.8 0.96 1.75 8.49 67.46 0.96
2.9 0.97 1.91 8.83 69.14 0.97
3.0 1.00 2.08 9.00 70.83 0.98

$fmi14_mean

Mean Percent (empirical) z Stanine T Percent (normal)
0.0 0.00 -3.39 1.00 16.06 0.00
0.1 0.00 -3.20 1.00 18.01 0.00
0.2 0.00 -3.00 1.00 19.96 0.00
0.3 0.01 -2.81 1.00 21.90 0.00
0.4 0.01 -2.61 1.00 23.85 0.00
0.5 0.02 -2.42 1.00 25.80 0.01
0.6 0.03 -2.23 1.00 27.74 0.01
0.7 0.03 -2.03 1.00 29.69 0.02
0.8 0.05 -1.84 1.33 31.64 0.03
0.9 0.05 -1.64 1.72 33.58 0.05
1.0 0.09 -1.45 2.11 35.53 0.07
1.1 0.12 -1.25 2.50 37.48 0.11
1.2 0.14 -1.06 2.88 39.42 0.15
1.3 0.20 -0.86 3.27 41.37 0.19
1.4 0.23 -0.67 3.66 43.32 0.25
1.5 0.29 -0.47 4.05 45.27 0.32
1.6 0.34 -0.28 4.44 47.21 0.39
1.7 0.41 -0.08 4.83 49.16 0.47
1.8 0.54 0.11 5.22 51.11 0.54
1.9 0.61 0.31 5.61 53.05 0.62
2.0 0.74 0.50 6.00 55.00 0.69
2.1 0.77 0.69 6.39 56.95 0.76
2.2 0.81 0.89 6.78 58.89 0.81
2.3 0.89 1.08 7.17 60.84 0.86
2.4 0.90 1.28 7.56 62.79 0.90
2.5 0.94 1.47 7.95 64.73 0.93
2.6 0.96 1.67 8.34 66.68 0.95
2.7 0.97 1.86 8.73 68.63 0.97
2.8 0.99 2.06 9.00 70.57 0.98
2.9 0.99 2.25 9.00 72.52 0.99
3.0 1.00 2.45 9.00 74.47 0.99

12 Overview on descriptive statistics per subgroup

Code
subgroup_stats <- list()

for (i in seq_along(subgroup_vars)){

subgroup_stats[[i]] <- 
  d_w_items_two_sexes %>% 
  select(ends_with("_mean"),
         any_of(subgroup_vars)[i]) %>% 
  group_by(across(any_of(subgroup_vars[i]))) %>% 
    describe_distribution() %>% 
  select(Variable, Mean, SD, IQR, Min, Max, n)

subgroup_stats[[i]][["subgroup_var"]] <- subgroup_vars[i]
}

subgroup_stats_df <- do.call(rbind, subgroup_stats)

# subgroup_stats_df <-
#   subgroup_stats_df %>%
#   mutate(group = str_remove(.group, "^.+=")) %>%
#   select(-.group)

display(subgroup_stats_df)
Variable Mean SD IQR Range n subgroup_var
fmi13_mean 1.71 0.51 0.71 (0.21, 3.00) 515 Geschlecht
presence_mean 1.72 0.58 0.67 (0.00, 3.00) 515 Geschlecht
acceptance13_mean 1.73 0.57 0.86 (0.00, 3.00) 515 Geschlecht
fmi14_mean 1.71 0.51 0.71 (0.21, 3.00) 515 Geschlecht
fmi13_mean 1.71 0.51 0.57 (0.21, 3.00) 495 Geschlecht
presence_mean 1.67 0.60 0.67 (0.00, 3.00) 495 Geschlecht
acceptance13_mean 1.74 0.59 0.57 (0.00, 3.00) 495 Geschlecht
fmi14_mean 1.71 0.51 0.57 (0.21, 3.00) 495 Geschlecht
fmi13_mean 1.69 0.51 0.64 (0.21, 3.00) 791 Achts_regel
presence_mean 1.65 0.59 0.67 (0.00, 3.00) 791 Achts_regel
acceptance13_mean 1.71 0.59 0.71 (0.00, 3.00) 791 Achts_regel
fmi14_mean 1.69 0.51 0.64 (0.21, 3.00) 791 Achts_regel
fmi13_mean 1.81 0.49 0.57 (0.21, 3.00) 219 Achts_regel
presence_mean 1.86 0.56 0.67 (0.00, 3.00) 219 Achts_regel
acceptance13_mean 1.80 0.55 0.71 (0.00, 3.00) 219 Achts_regel
fmi14_mean 1.81 0.49 0.57 (0.21, 3.00) 219 Achts_regel
fmi13_mean 1.82 0.43 0.43 (0.71, 3.00) 115 Retreats
presence_mean 1.85 0.50 0.67 (0.33, 3.00) 115 Retreats
acceptance13_mean 1.81 0.48 0.57 (0.71, 3.00) 115 Retreats
fmi14_mean 1.82 0.43 0.43 (0.71, 3.00) 115 Retreats
fmi13_mean 1.68 0.52 0.64 (0.21, 3.00) 672 Retreats
presence_mean 1.64 0.59 0.67 (0.00, 3.00) 672 Retreats
acceptance13_mean 1.70 0.60 0.71 (0.00, 3.00) 672 Retreats
fmi14_mean 1.68 0.52 0.64 (0.21, 3.00) 672 Retreats
fmi13_mean 1.71 0.45 0.57 (0.57, 2.93) 58 Retreats
presence_mean 1.68 0.55 0.67 (0.17, 3.00) 58 Retreats
acceptance13_mean 1.73 0.50 0.57 (0.71, 3.00) 58 Retreats
fmi14_mean 1.71 0.45 0.57 (0.57, 2.93) 58 Retreats
fmi13_mean 1.71 0.46 0.71 (0.93, 2.93) 86 Retreats
presence_mean 1.71 0.59 0.83 (0.67, 3.00) 86 Retreats
acceptance13_mean 1.74 0.53 0.71 (0.29, 3.00) 86 Retreats
fmi14_mean 1.71 0.46 0.71 (0.93, 2.93) 86 Retreats
fmi13_mean 1.89 0.55 0.71 (0.29, 2.79) 79 Retreats
presence_mean 1.94 0.68 0.83 (0.00, 3.00) 79 Retreats
acceptance13_mean 1.93 0.63 0.71 (0.14, 3.00) 79 Retreats
fmi14_mean 1.89 0.55 0.71 (0.29, 2.79) 79 Retreats
fmi13_mean 1.67 0.59 0.79 (0.43, 2.79) 33 Vip_regel
presence_mean 1.66 0.77 1.00 (0.00, 3.00) 33 Vip_regel
acceptance13_mean 1.71 0.64 0.79 (0.29, 3.00) 33 Vip_regel
fmi14_mean 1.67 0.59 0.79 (0.43, 2.79) 33 Vip_regel
fmi13_mean 1.72 0.51 0.64 (0.21, 3.00) 977 Vip_regel
presence_mean 1.70 0.59 0.67 (0.00, 3.00) 977 Vip_regel
acceptance13_mean 1.73 0.58 0.57 (0.00, 3.00) 977 Vip_regel
fmi14_mean 1.72 0.51 0.64 (0.21, 3.00) 977 Vip_regel
fmi13_mean 1.74 0.51 0.64 (0.21, 3.00) 526 age_below_md
presence_mean 1.71 0.58 0.67 (0.00, 3.00) 526 age_below_md
acceptance13_mean 1.76 0.59 0.71 (0.00, 3.00) 526 age_below_md
fmi14_mean 1.74 0.51 0.64 (0.21, 3.00) 526 age_below_md
fmi13_mean 1.68 0.50 0.64 (0.21, 3.00) 484 age_below_md
presence_mean 1.68 0.61 0.67 (0.00, 3.00) 484 age_below_md
acceptance13_mean 1.70 0.56 0.71 (0.00, 3.00) 484 age_below_md
fmi14_mean 1.68 0.50 0.64 (0.21, 3.00) 484 age_below_md
Code
subgroup_stats_long <- 
subgroup_stats_df %>% 
  select(Variable, Mean, SD, Subgroup = subgroup_var) %>% 
  mutate(Subscale = str_remove(Variable, "_mean")) %>% 
  pivot_longer(-c(Variable, Mean, Subscale, Subgroup), 
               values_to = "SD")

display(subgroup_stats_long)
Variable Mean Subgroup Subscale name SD
fmi13_mean 1.71 Geschlecht fmi13 SD 0.51
presence_mean 1.72 Geschlecht presence SD 0.58
acceptance13_mean 1.73 Geschlecht acceptance13 SD 0.57
fmi14_mean 1.71 Geschlecht fmi14 SD 0.51
fmi13_mean 1.71 Geschlecht fmi13 SD 0.51
presence_mean 1.67 Geschlecht presence SD 0.60
acceptance13_mean 1.74 Geschlecht acceptance13 SD 0.59
fmi14_mean 1.71 Geschlecht fmi14 SD 0.51
fmi13_mean 1.69 Achts_regel fmi13 SD 0.51
presence_mean 1.65 Achts_regel presence SD 0.59
acceptance13_mean 1.71 Achts_regel acceptance13 SD 0.59
fmi14_mean 1.69 Achts_regel fmi14 SD 0.51
fmi13_mean 1.81 Achts_regel fmi13 SD 0.49
presence_mean 1.86 Achts_regel presence SD 0.56
acceptance13_mean 1.80 Achts_regel acceptance13 SD 0.55
fmi14_mean 1.81 Achts_regel fmi14 SD 0.49
fmi13_mean 1.82 Retreats fmi13 SD 0.43
presence_mean 1.85 Retreats presence SD 0.50
acceptance13_mean 1.81 Retreats acceptance13 SD 0.48
fmi14_mean 1.82 Retreats fmi14 SD 0.43
fmi13_mean 1.68 Retreats fmi13 SD 0.52
presence_mean 1.64 Retreats presence SD 0.59
acceptance13_mean 1.70 Retreats acceptance13 SD 0.60
fmi14_mean 1.68 Retreats fmi14 SD 0.52
fmi13_mean 1.71 Retreats fmi13 SD 0.45
presence_mean 1.68 Retreats presence SD 0.55
acceptance13_mean 1.73 Retreats acceptance13 SD 0.50
fmi14_mean 1.71 Retreats fmi14 SD 0.45
fmi13_mean 1.71 Retreats fmi13 SD 0.46
presence_mean 1.71 Retreats presence SD 0.59
acceptance13_mean 1.74 Retreats acceptance13 SD 0.53
fmi14_mean 1.71 Retreats fmi14 SD 0.46
fmi13_mean 1.89 Retreats fmi13 SD 0.55
presence_mean 1.94 Retreats presence SD 0.68
acceptance13_mean 1.93 Retreats acceptance13 SD 0.63
fmi14_mean 1.89 Retreats fmi14 SD 0.55
fmi13_mean 1.67 Vip_regel fmi13 SD 0.59
presence_mean 1.66 Vip_regel presence SD 0.77
acceptance13_mean 1.71 Vip_regel acceptance13 SD 0.64
fmi14_mean 1.67 Vip_regel fmi14 SD 0.59
fmi13_mean 1.72 Vip_regel fmi13 SD 0.51
presence_mean 1.70 Vip_regel presence SD 0.59
acceptance13_mean 1.73 Vip_regel acceptance13 SD 0.58
fmi14_mean 1.72 Vip_regel fmi14 SD 0.51
fmi13_mean 1.74 age_below_md fmi13 SD 0.51
presence_mean 1.71 age_below_md presence SD 0.58
acceptance13_mean 1.76 age_below_md acceptance13 SD 0.59
fmi14_mean 1.74 age_below_md fmi14 SD 0.51
fmi13_mean 1.68 age_below_md fmi13 SD 0.50
presence_mean 1.68 age_below_md presence SD 0.61
acceptance13_mean 1.70 age_below_md acceptance13 SD 0.56
fmi14_mean 1.68 age_below_md fmi14 SD 0.50
Code
# subgroup_stats_long %>% 
#   ggplot(aes(x = Variable, color = group)) +
#   geom_errorbar(aes(ymin = Mean-SD, ymax = Mean+SD), position = "dodge") +
#   geom_point2(aes(y = Mean), alpha = .7, size = 2) +
#   facet_wrap(subgroup_vars ~ Variable, scales = "free")

12.1 Regression models

12.1.1 m1

Code
m1 <- lm(phq_sum ~ presence_mean + acceptance13_mean, data = d_w_items_two_sexes)
parameters(m1) %>% display()

performance(m1) %>% display
summary(m1)

Standardized data:

Code
parameters(m1, standardize = "refit") %>% display

13 Session info

Code
sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-apple-darwin20
Running under: macOS 15.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] de_DE.UTF-8/de_DE.UTF-8/de_DE.UTF-8/C/de_DE.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] reactable_0.4.4    janitor_2.2.1      DT_0.33            tinytable_0.10.0  
 [5] psych_2.4.12       semPlot_1.1.6      lavaan_0.6-19      magrittr_2.0.3    
 [9] gt_1.0.0           knitr_1.50         DataExplorer_0.8.3 lubridate_1.9.4   
[13] forcats_1.0.0      stringr_1.5.1      dplyr_1.1.4        purrr_1.0.4       
[17] readr_2.1.5        tidyr_1.3.1        tibble_3.2.1       ggplot2_3.5.2     
[21] tidyverse_2.0.0    here_1.0.1         see_0.11.0         report_0.6.1      
[25] parameters_0.27.0  performance_0.15.0 modelbased_0.12.0  insight_1.3.1     
[29] effectsize_1.0.1   datawizard_1.1.0   correlation_0.8.8  bayestestR_0.16.1 
[33] easystats_0.7.5   

loaded via a namespace (and not attached):
  [1] RColorBrewer_1.1-3   rstudioapi_0.17.1    jsonlite_1.8.8      
  [4] estimability_1.5.1   farver_2.1.2         nloptr_2.1.1        
  [7] rmarkdown_2.28       vctrs_0.6.5          minqa_1.2.8         
 [10] base64enc_0.1-3      htmltools_0.5.8.1    haven_2.5.4         
 [13] Formula_1.2-5        sass_0.4.9           bslib_0.8.0         
 [16] htmlwidgets_1.6.4    plyr_1.8.9           cachem_1.1.0        
 [19] emmeans_1.11.1       networkD3_0.4        igraph_2.0.3        
 [22] lifecycle_1.0.4      pkgconfig_2.0.3      Matrix_1.7-0        
 [25] R6_2.5.1             fastmap_1.2.0        snakecase_0.11.1    
 [28] digest_0.6.37        OpenMx_2.21.13       fdrtool_1.2.18      
 [31] colorspace_2.1-1     patchwork_1.3.0      rprojroot_2.0.4     
 [34] crosstalk_1.2.1      Hmisc_5.2-3          reactR_0.6.1        
 [37] labeling_0.4.3       fansi_1.0.6          timechange_0.3.0    
 [40] abind_1.4-8          compiler_4.4.1       bit64_4.0.5         
 [43] withr_3.0.2          glasso_1.11          htmlTable_2.4.3     
 [46] backports_1.5.0      carData_3.0-5        MASS_7.3-60.2       
 [49] GPArotation_2024.3-1 corpcor_1.6.10       gtools_3.9.5        
 [52] tools_4.4.1          pbivnorm_0.6.0       foreign_0.8-86      
 [55] zip_2.3.1            nnet_7.3-19          glue_1.8.0          
 [58] quadprog_1.5-8       nlme_3.1-164         lisrelToR_0.3       
 [61] grid_4.4.1           checkmate_2.3.2      cluster_2.1.6       
 [64] reshape2_1.4.4       generics_0.1.3       gtable_0.3.5        
 [67] tzdb_0.4.0           data.table_1.17.8    hms_1.1.3           
 [70] xml2_1.3.6           sem_3.1-16           pillar_1.11.0       
 [73] vroom_1.6.5          rockchalk_1.8.157    splines_4.4.1       
 [76] lattice_0.22-6       bit_4.0.5            kutils_1.73         
 [79] tidyselect_1.2.1     pbapply_1.7-2        gridExtra_2.3       
 [82] litedown_0.7         stats4_4.4.1         xfun_0.52           
 [85] qgraph_1.9.8         arm_1.14-4           stringi_1.8.4       
 [88] yaml_2.3.10          boot_1.3-30          evaluate_1.0.3      
 [91] codetools_0.2-20     mi_1.1               cli_3.6.5           
 [94] RcppParallel_5.1.9   rpart_4.1.23         xtable_1.8-4        
 [97] jquerylib_0.1.4      Rcpp_1.1.0           coda_0.19-4.1       
[100] png_0.1-8            XML_3.99-0.18        parallel_4.4.1      
[103] jpeg_0.1-10          lme4_1.1-35.5        mvtnorm_1.3-1       
[106] scales_1.4.0         crayon_1.5.3         openxlsx_4.2.8      
[109] rlang_1.1.6          mnormt_2.1.1