Impact of Beauty on Instructor's Teaching Ratings

Description
Data on course evaluations, course characteristics, and professor characteristics for 463 courses for the academic years 2000–2002 at the University of Texas at Austin.

Usage
data("TeachingRatings")

Format
A data frame containing 463 observations on 13 variables.

- minority
 factor. Does the instructor belong to a minority (non-Caucasian)?

- age
 the professor's age.

- gender
 factor indicating instructor's gender.

- credits
 factor. Is the course a single-credit elective (e.g., yoga, aerobics, dance)?

- beauty
 rating of the instructor's physical appearance by a panel of six students, averaged across the six panelists, shifted to have a mean of zero.

- eval
 course overall teaching evaluation score, on a scale of 1 (very unsatisfactory) to 5 (excellent).

- division
 factor. Is the course an upper or lower division course? (Lower division courses are mainly large freshman and sophomore courses)?

- native
 factor. Is the instructor a native English speaker?

- tenure
 factor. Is the instructor on tenure track?

- students
 number of students that participated in the evaluation.

- allstudents
 number of students enrolled in the course.

- prof
 factor indicating instructor identifier.

Details
A sample of student instructional ratings for a group of university teachers along with beauty rating (average from six independent judges) and a number of other characteristics.

Source
The data were provided by Prof. Hamermesh. The first 8 variables are also available in the online complements to Stock and Watson (2007) at http://wps.aw.com/aw_stock_ie_2/

References

See Also
StockWatson2007

Examples
data("TeachingRatings")

evaluation score vs. beauty
plot(eval ~ beauty, data = TeachingRatings)
fm <- lm(eval ~ beauty, data = TeachingRatings)
abline(fm)
summary(fm)

prediction of Stock & Watson's evaluation score
sw <- with(TeachingRatings, mean(beauty) + c(0, 1) * sd(beauty))
names(sw) <- c("Watson", "Stock")
predict(fm, newdata = data.frame(beauty = sw))

Hamermesh and Parker, 2005, Table 3
fmw <- lm(eval ~ beauty + gender + minority + native + tenure + division + credits, weights = students, data = TeachingRatings)
coeftest(fmw, vcov = sandwich)

(same coefficients but with different covariances)