Laden Sie \(n=10^k\) Tweets von Twitter herunter (mit \(k=2\)) via der Twitter API; Suchterm soll sein “(karl_lauterbach?)”. Bereiten Sie die Textdaten mit grundlegenden Methoden des Textminings auf (Tokenisieren, Stopwörter entfernen, Zahlen entfernen, …). Berichten Sie dann die 10 häufigsten Wörter als Schätzer für die Dinge, die an Karl Lauterbach getweetet werden.
Solution
library(rtweet)library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.3 ✔ readr 2.1.4
✔ forcats 1.0.0 ✔ stringr 1.5.0
✔ ggplot2 3.4.4 ✔ tibble 3.2.1
✔ lubridate 1.9.3 ✔ tidyr 1.3.0
✔ purrr 1.0.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ purrr::flatten() masks rtweet::flatten()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors