Rows: 344 Columns: 9
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (3): species, island, sex
dbl (6): rownames, bill_length_mm, bill_depth_mm, flipper_length_mm, body_ma...
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
nrow(d)
[1] 344
Weg 1
d %>%filter(!complete.cases(.)) %>%nrow()
[1] 11
Weg 2
d %>%filter(if_any(everything(), ~is.na(.))) %>%nrow()
[1] 11
Categories:
2023
eda
na
string
Source Code
---exname: filter-na2expoints: 1extype: stringexsolution: NAcategories:- 2023- eda- na- stringdate: '2023-05-14'slug: filter-na2title: filter-na2---# AufgabeFiltern Sie alle Zeilen *mit* fehlende Werte im Datensatz `penguins`!</br></br></br></br></br></br></br></br></br></br># Lösung## Setup```{r}library(tidyverse)d_path <-"https://vincentarelbundock.github.io/Rdatasets/csv/palmerpenguins/penguins.csv"d <-read_csv(d_path)nrow(d)```## Weg 1```{r}d %>%filter(!complete.cases(.)) %>%nrow()```## Weg 2```{r}d %>%filter(if_any(everything(), ~is.na(.))) %>%nrow()```---Categories: - 2023- eda- na- string