fattails02

probability
bayes
bayesbox
simulation
normal-distribution
Published

November 23, 2022

Exercise

In seinem Buch “Statistical Consequences of Fat Tails” schreibt der Autor, Nassim Taleb (S. 53):

In the summer of 1998, the hedge fund called “Long Term Capital Management” (LTCM) proved to have a very short life; it went bust from some deviations in the markets –those “of an unexpected nature”. The loss was a yuuuge deal because two of the partners received the Swedish Riksbank Prize, marketed as the “Nobel” in economics. (…) At least two of the partners made the statement that it was a “10 sigma” event (10 standard deviations), hence they should be absolved of all accusations of incompetence (I was first hand witness of two such statements).

Wir testen in diesem Zusammenhang zwei Hypothesen: \(H_N\), dass der Finanzmarkt normalverteilt ist und \(H_F\), dass die Variable fat tailed ist, also nicht normalverteilt, sondernn einer Verteilung entspringt, in der “Extremereignisse” üblicher sind als in einer Normalverteilung.

Um die Fat-Tails-Verteilung mit \(n=100\) zu simulieren, nutzen wir hier folgende Funktion:

fat_tail_data <- rt(n = 100, df = 2)
fat_tail_data <- rt(n = 100, df = 2)

Dabei bedeutet df = 1, dass die Verteilung sehr randlastig (fat tailed) sein soll (genauer gesagt eine t-Verteilung mit zwei Freiheitsgraden). Details zu dieser R-Funktion sollen uns hier nicht interessieren.

Berechnen wir die Wahrscheinlichkeit, dass die Daten einer Normalverteilung entspringen (und nicht der Fat-Tail-Verteilung).

Die Wahrscheinlichkeit eines 10-Sigma-Events ist übrigens … klein. Taleb berichtet sie mit \(1.31 \cdot 10^{-23}\):

L_norm <- 1.31e-23

Das sind 22 Nuller nach dem Komma, danach kommt die 1.

Für die t-Verteilung ist der entsprechende Wert:

L_fat <- 1 - pt(q = 10, df = 2)
L_fat
[1] 0.004926229

Wie hoch ist die Post-Wahrscheinlichkeit, dass die Variable normalverteilt ist?

Hinweise:

  • Geben Sie Anteile oder Wahrscheinlichkeiten stets mit zwei Dezimalstellen an (sofern nicht anders verlangt).
  • Apriori soll und die Hypothese der Normalverteilung 1000 Mal plausibler sein als die der t-Verteilung.

Answerlist

  • kleiner als 50%
  • kleiner als 5%
  • kleiner als 0.5%
  • kleiner als 0.05%
  • kleiner als 0.005%











Solution

library(tidyverse)

Erstellen wir erstmal den ersten Teil einer Bayes-Box:

d <-
  tibble(H = c("Normalverteilt", "Randlastig verteilt"),
         Prior = c(1e3,1))

d
# A tibble: 2 × 2
  H                   Prior
  <chr>               <dbl>
1 Normalverteilt       1000
2 Randlastig verteilt     1

Dann fügen wir den Likelihood jeder Hypothese dazu:

d <-
  d %>% 
  mutate(L = c(L_norm, L_fat))

d
# A tibble: 2 × 3
  H                   Prior        L
  <chr>               <dbl>    <dbl>
1 Normalverteilt       1000 1.31e-23
2 Randlastig verteilt     1 4.93e- 3

Dann berechnen wir die Post-Wahrscheinlichkeit:

d <-
  d %>% 
  mutate(Post_unstand = Prior * L,
         Post = Post_unstand / sum(Post_unstand))
d
# A tibble: 2 × 5
  H                   Prior        L Post_unstand     Post
  <chr>               <dbl>    <dbl>        <dbl>    <dbl>
1 Normalverteilt       1000 1.31e-23     1.31e-20 2.66e-18
2 Randlastig verteilt     1 4.93e- 3     4.93e- 3 1   e+ 0

Die Wahrscheinlichkeit, dass die Variable normalverteilt ist, ist seeeeehr klein, ca. \(10^{-18}\).

Answerlist

  • FALSE
  • FALSE
  • FALSE
  • FALSE
  • TRUE

Categories:

  • probability
  • simulation
  • normal-distribution