library(tidymodels)
library(tidyverse)
library(tictoc)
bike02
statlearning
tidymodels
num
Aufgabe
Kann man die Anzahl gerade verliehener Fahrräder eines entsprechenden Anbieters anhand der Temperatur vorhersagen?
In dieser Übung untersuchen wir diese Frage.
Sie können die Daten von der Webseite der UCI herunterladen.
Wir beziehen uns auf den Datensatz day
.
Berechnen Sie einen Entscheidungsbaum mit der Anzahl der aktuell vermieteten Räder als AV und der aktuellen Temperatur als UV!
Tunen Sie den Cp-Parameter des Baumes.
Geben Sie den MSE an!
Lösung
<- read.csv("/Users/sebastiansaueruser/datasets/Bike-Sharing-Dataset/day.csv") d
glimpse(d)
Rows: 731
Columns: 16
$ instant <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, …
$ dteday <chr> "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-04", "20…
$ season <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
$ yr <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ mnth <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
$ holiday <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,…
$ weekday <int> 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4,…
$ workingday <int> 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1,…
$ weathersit <int> 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2,…
$ temp <dbl> 0.3441670, 0.3634780, 0.1963640, 0.2000000, 0.2269570, 0.20…
$ atemp <dbl> 0.3636250, 0.3537390, 0.1894050, 0.2121220, 0.2292700, 0.23…
$ hum <dbl> 0.805833, 0.696087, 0.437273, 0.590435, 0.436957, 0.518261,…
$ windspeed <dbl> 0.1604460, 0.2485390, 0.2483090, 0.1602960, 0.1869000, 0.08…
$ casual <int> 331, 131, 120, 108, 82, 88, 148, 68, 54, 41, 43, 25, 38, 54…
$ registered <int> 654, 670, 1229, 1454, 1518, 1518, 1362, 891, 768, 1280, 122…
$ cnt <int> 985, 801, 1349, 1562, 1600, 1606, 1510, 959, 822, 1321, 126…
Data split
set.seed(42)
<- initial_split(d, strata = cnt)
d_split
<- training(d_split)
d_train <- testing(d_split) d_test
Define recipe
<-
rec1 recipe(cnt ~ temp, data = d)
Define model
<-
m1 decision_tree(cost_complexity = tune(),
mode = "regression")
Define Resamples
<- vfold_cv(d_train) rsmpl
Workflow
<-
wf1 workflow() %>%
add_model(m1) %>%
add_recipe(rec1)
Fit
tic()
<- tune_grid(
fit1 object = wf1,
resamples = rsmpl)
toc()
7.197 sec elapsed
fit1
# Tuning results
# 10-fold cross-validation
# A tibble: 10 × 4
splits id .metrics .notes
<list> <chr> <list> <list>
1 <split [492/55]> Fold01 <tibble [20 × 5]> <tibble [0 × 3]>
2 <split [492/55]> Fold02 <tibble [20 × 5]> <tibble [0 × 3]>
3 <split [492/55]> Fold03 <tibble [20 × 5]> <tibble [0 × 3]>
4 <split [492/55]> Fold04 <tibble [20 × 5]> <tibble [0 × 3]>
5 <split [492/55]> Fold05 <tibble [20 × 5]> <tibble [0 × 3]>
6 <split [492/55]> Fold06 <tibble [20 × 5]> <tibble [0 × 3]>
7 <split [492/55]> Fold07 <tibble [20 × 5]> <tibble [0 × 3]>
8 <split [493/54]> Fold08 <tibble [20 × 5]> <tibble [0 × 3]>
9 <split [493/54]> Fold09 <tibble [20 × 5]> <tibble [0 × 3]>
10 <split [493/54]> Fold10 <tibble [20 × 5]> <tibble [0 × 3]>
Bester Kandidat
show_best(fit1)
Warning: No value of `metric` was given; metric 'rmse' will be used.
# A tibble: 5 × 7
cost_complexity .metric .estimator mean n std_err .config
<dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
1 0.0208 rmse standard 1478. 10 34.7 Preprocessor1_Model09
2 0.00220 rmse standard 1538. 10 36.4 Preprocessor1_Model01
3 0.000306 rmse standard 1556. 10 40.3 Preprocessor1_Model07
4 0.00000175 rmse standard 1558. 10 39.7 Preprocessor1_Model02
5 0.0000194 rmse standard 1558. 10 39.7 Preprocessor1_Model03
<-
wf1_best %>%
wf1 finalize_workflow(parameters = select_best(fit1))
Warning: No value of `metric` was given; metric 'rmse' will be used.
Last Fit
<- last_fit(wf1_best, d_split) fit_testsample
Model performance (metrics) in test set
%>% collect_metrics() fit_testsample
# A tibble: 2 × 4
.metric .estimator .estimate .config
<chr> <chr> <dbl> <chr>
1 rmse standard 1430. Preprocessor1_Model1
2 rsq standard 0.473 Preprocessor1_Model1
<- fit_testsample %>% collect_metrics() %>% pluck(3, 1)
MSE MSE
[1] 1430.304
Solution: 1430.3042213
Categories:
- statlearning
- tidymodels
- num