Wählen Sie das Diagramm, in dem kein Interaktionseffekt (in der Population) vorhanden ist (bzw. wählen Sie das Diagramm, dass dies am ehesten darstellt).
Answerlist
Diagramm A
Diagramm B
Diagramm C
Diagramm D
Diagramm E
Solution
Das Streudiagramm Diagramm B zeigt keinen Interaktionseffekt.
Answerlist
Falsch
Wahr
Falsch
Falsch
Falsch
Categories:
interaction
regression
Source Code
---exname: interaktionseffekt1extype: schoiceexsolution: r mchoice2string(d_five_options_with_sim_data$is_correct, single = TRUE)exshuffle: noexpoints: 1exdyn: yescategories:- interaction- regression- paperdate: '2022-12-15'title: interaktionseffekt1---<!-- based on Karsten Luebke et al. -->```{r libs, include = FALSE}library(tidyverse)library(mosaic)library(glue)library(moderndive)library(knitr)library(kableExtra)library(testthat)library(exams)``````{r global-knitr-options, include=FALSE}knitr::opts_chunk$set(fig.pos ='H',fig.asp =0.618,fig.width =4,fig.cap ="", fig.path ="",echo =FALSE,message=FALSE,warning =FALSE)```# Exercise```{r defs, echo=FALSE}# draw random values:n_set <-c(30, 50, 70)n <-sample(n_set, 1)anteil_g1_set <-c(.4, .5, .6)anteil_g1 <-sample(anteil_g1_set, 1)n_g1 <-floor(anteil_g1 * n)xmin_set <-c(-20,-10)xmin <-sample(xmin_set,1)xmax_set <-c(10,20)xmax <-sample(xmax_set,1)e_set <-c(.1, .2, .3, .4, .5)e <-sample(e_set, 1)steigung1_set <-c(-10, 10)steigung2_set <-c(-40, 0, +40)achsenabschnitt_set <-c(-40, +40)interaktion_x_g_set <-c(-10, 0, +10)``````{r build-grid, echo = FALSE}# build grid of all possible combinationsd <-expand_grid(steigung1_set, steigung2_set, achsenabschnitt_set, interaktion_x_g_set) %>%mutate(item =glue("$y = {achsenabschnitt_set} + {steigung1_set}\\cdot x + {steigung2_set} \\cdot g + {interaktion_x_g_set} \\cdot xg + \\epsilon$")) ``````{r comp-dfs, echo = FALSE, comment = ""}# draw one correct and 4 false answer options:x <-runif(n, min = xmin, max = xmax)g <-sample(x =c(0, 1), size = n,replace =TRUE,prob =c(anteil_g1, 1-anteil_g1))# only 5 answer options are supported:d_four_wrong_options <- d %>%filter(interaktion_x_g_set !=0) %>%sample_n(size =4) %>%# choose a "correct" modelmutate(is_correct =FALSE)# draw one model as "correct" oned_correct <- d %>%filter(interaktion_x_g_set ==0) %>%sample_n(size =1) %>%mutate(is_correct =TRUE)d_five_options <- d_four_wrong_options %>%bind_rows(d_correct) ``````{r sim-data, echo = FALSE}# simulate data:sim_data <-function(steigung1_set, steigung2_set, achsenabschnitt_set, interaktion_x_g_set) { x <-runif(n, min = xmin, max = xmax) g <-sample(x =c(0, 1), size = n,replace =TRUE,prob =c(anteil_g1, 1-anteil_g1)) yhat <- achsenabschnitt_set + steigung1_set * x + steigung2_set * g + interaktion_x_g_set * x*g yi <- yhat +rnorm(n, sd =sd(yhat)*e)expect_equal(length(yhat), length(yi)) d <-tibble(x = x,g = g,yhat = yhat,yi = yi)return(d)}get_interaction_sample <-function(d) {# get interaction effect from lm coefficicents: mylm <-lm(yi ~ x*g, data = d) interact_eff <-coef(mylm)["x:g"]return(interact_eff)}d_five_options_with_sim_data <- d_five_options %>%mutate(d_sim =pmap(.l = d_five_options %>%select(-c(item, is_correct)),.f = sim_data)) %>%mutate(interact_eff_sample =map_dbl(d_sim, get_interaction_sample)) %>%sample_n(size =nrow(.)) %>%# shuffle it mutate(id =glue("Diagramm {LETTERS[1:nrow(.)]}"))``````{r plot-scatter, echo = FALSE, comment = "", results = "hide", message = FALSE, fig.show='hold'}gg_scatter <-function(d_sim, id){ggplot(data = d_sim) +aes(y = yi, x = x, color =factor(g), shape =factor(g)) +geom_point() +geom_smooth(method ="lm", se =FALSE) +ggtitle(glue("Diagramm {id}")) +labs(color ="Gruppe",shape ="Gruppe") +scale_x_continuous(limits =c(xmin, xmax)) +scale_y_continuous(limits =c(-500, +500))}d_five_options_with_sim_data %>%select(d_sim, id) %>%pmap(gg_scatter)```Wählen Sie das Diagramm, in dem *kein* Interaktionseffekt (in der Population) vorhanden ist (bzw. wählen Sie das Diagramm, dass dies am ehesten darstellt).```{r questionlist, echo = FALSE, results = "asis"}answerlist(d_five_options_with_sim_data$id, markup ="markdown")```</br></br></br></br></br></br></br></br></br></br># SolutionDas Streudiagramm ``r d_five_options_with_sim_data$id[d_five_options_with_sim_data$is_correct == TRUE]`` zeigt *keinen* Interaktionseffekt.```{r solutionlist, echo = FALSE, results = "asis"}answerlist(ifelse(d_five_options_with_sim_data$is_correct, "Wahr", "Falsch"), markup ="markdown")```---Categories: - interaction- regression